Orbital dilution effect in Fe_{1-x}Mn_xCr₂O₄

Shintaro OHTANI¹, Mitsuru SAITO¹, Nobuyuki ABE¹, Hajime SAGAYAMA¹, Taka-hisa ARIMA^{*1} ¹Tohoku Univ., Katahira, Aoba-ku, Sendai 980-8577, Japan

Introduction

When the electronic orbital levels of transition-metal ions are degenerate, the cooperative Jahn-Teller effect generally causes the crystal distortion [1]. Many studies have been performed on spinel-type transition-metal oxides, in which the crystal structure is cubic at high temperatures. For example, in an inverse spinel $CuFe_2O_4$, the Jahn-Teller distortion relevant to the dy orbitals of Cu²⁺ ions at octahedral sites causes a structural transition from cubic to tetragonal at around 630 K [2]. A similar tetragonal distortion is observed in Mn₃O₄ with Jahn-Teller-active Mn³⁺ ions at octahedral sites. In these compounds, the twofold dy level of Cu^{2+} and Mn^{3+} is split with the elongated tetragonal distortion. Öpik and Pryce pointed out that the elongated character should result from the anharmonic terms of the elastic energy [3]. FeCr₂O₄ is another typical cooperative Jahn–Teller system with the spinel structure. Fe^{2+} ions with the high-spin $3d^6$ configuration selectively occupy tetrahedral sites. One electron of the minority spin therefore occupies the lowerlying twofold dy level. The orbital degree of freedom of the electron causes cooperative Jahn-Teller distortion below 135 K [4]. The compressed tetragonal character (c<a) of the low-temperature phase is also attributable to the lattice anharmonicity [3].

We have studied the effect of orbital dilution in the spinel-type $Fe_{1-x}Mn_xCr_2O_4$ system. The substitution of Mn for Fe is regarded as the introduction of voids in terms of orbital degree of freedom, because the high-spin Mn^{2+} ion has no minority-spin electron. In contrast, the spin sector is expected to be less affected by the substitution, because of a rather small difference in the formal magnetic moment between Fe²⁺ and Mn²⁺. In fact, similar successive magnetic transitions have been reported for FeCr₂O₄ and MnCr₂O₄ [5-7]. Present investigation in the solid solution shows that the orbital dilution not only reduces the structural transition temperature but also affects the type of cooperative Jahn-Teller distortion. The observed change in distortion type can be explained in terms of a competition between the lattice anharmonicity and the spin-orbit coupling.

Experimental

Polycrystalline $Fe_{1,x}Mn_xCr_2O_4$ samples were prepared by solid state reaction. Magnetization measurements were carried out by using a superconducting quantum interference device. High-resolution x-ray diffraction patterns were collected by using diffractometers on beamlines 4C and 1A.

Results and Discussions

Temperature dependence of the x-ray diffraction profile for x = 0.1, 0.7, 0.8, and 0.9 is shown in Fig. 1. The structural transition temperature and the peak splitting are clearly suppressed as x increases. In $Fe_{0.0}Mn_{0.1}Cr_{2}O_{4}$, the (800) peak begins splitting at around T_{sl}~130 K, indicating the cooperative Jahn-Teller distortion related to a ferroic arrangement of occupied dy orbitals of Fe^{2+} . T_{e1} for x= 0.7 and 0.8 are approximately 50 K and 40 K, respectively. The lower-angle peak in the x=0.1 sample shows a further small split at $T_{_{\rm S2}} \sim T_{_{\rm NI}} \sim 70$ K, indicating another structural transition from tetragonal to orthorhombic. In $Fe_{0.3}Mn_{0.7}Cr_2O_4$, which exhibits a cubicto-tetragonal transition at a lower temperature than the ferrimagnetic transition temperature, tetragonal distortion of an elongated type (a<c) is observed. The lowtemperature orthorhombic phase is absent for 0.7 and 0.8. For x=0.9, one does not see splitting of the (800) peak.

The phase diagram of $Fe_{1-x}Mn_xCr_2O_4$ is summarized in Fig. 2. The cubic-to-tetragonal structural transition

Fig. 1: (800) peak profiles of powder x-ray diffraction patterns for various compositions and temperatures in polycrystalline $Fe_{1x}Mn_xCr_2O_4$.

temperature T_{st} decreases as the Mn concentration increases. Here it is interesting to compare the observed orbital dilution effect with the well-known spin-dilution effect in a ferromagnet. A Monte Carlo calculation showed that the site-percolation limit for the diamond lattice is approximately 0.43 [14]. Although Fe²⁺ and Mn²⁺ ions form the diamond lattice in the spinel-type Fe₁.

Materials Science

 $_xMn_xCr_2O_4$, the cubic-tetragonal transition survives for the orbital concentration at least down to 1-x=0.2, which is much smaller than the percolation limit. T_{s1} is roughly proportional to the Fe concentration 1-x, in accordance with the mean-field theory. This implies the long-range coupling between Fe²⁺ d γ orbitals via a strain field in the spinel system, where FeO₄ tetrahedra are isolated from one another [5, 15].

The ferrimagnetic transition temperature T_{NI} and the conical magnetic transition temperature $T_{_{\rm N2}}$ are less sensitive to the Mn substitution than the structural transition temperature T_{s1} . As a result, T_{s1} decreases to meet the ferrimagnetic transition temperature T_{NI} at around $x \sim 0.5$. Figure 2 also suggests a strong coupling between magnetism and structure. It seems that the ferrimagnetic transition accompanies a structural transition for x<0.5. The crystal structure transforms to orthorhombic at $T_{s2} \sim T_{NI}$. A similar orthorhombic distortion was reported in some spinel-type mixed chromites, $Cu_{1-x}Ni_{v}Cr_{2}O_{4}$ and $Fe_{1-x}Ni_{v}Cr_{2}O_{4}$ [5]. Pure NiCr₂O₄ becomes tetragonal with c>a in contrast to $CuCr_2O_4$ and $FeCr_2O_4$ with the spontaneous tetragonal distortion with c<a. The orthorhombic distortion in the mixed crystals should originate from the competition between the two types of distortion. In the case of Fe₁ $_{x}Mn_{x}Cr_{2}O_{4}$, in contrast, MnCr₂O₄ does not contain any Jahn-Teller-active ions. Therefore, the origin of the orthorhombic distortion should be different from that in $Cu_{1,x}Ni_{x}Cr_{2}O_{4}$ and $Fe_{1,x}Ni_{x}Cr_{2}O_{4}$. The orthorhombic distortion in Fe1, Mn, Cr2O4 should be ascribed to the interplay between spin and orbital at the Fe²⁺ ions. A simple perturbation calculation suggests that the Fe^{2+} minority-spin electron distribution tends to extend perpendicular to the spin moments. The possible orbital shape is attached to Fig. 2.

Acknowledgments

This work was supported in part by Grant-in-Aid for Scientific Research (nos. 19340089 and 19052001) from JSPS and MEXT, Japan.

References

- H. A. Jahn and E. Teller, Proc. R. Soc. A 161, 220 (1937).
- [2] H. Ohnishi, T. Teranishi, and W. Miyahara, J. Phys. Soc. Jpn. 14, 106 (1959).
- [3] U. Öpik and M. H. L. Pryce, Proc. R. Soc. A 238, 425 (1957).
- [4] A. Wold, R. J. Arnott, E. Whipple, and J. B. Goodenough, J. Appl. Phys. 34, 1085 (1963).
- [5] J. M. Hastings and L. M. Corliss, Phys. Rev. 126, 556 (1962).
- [6] G. Shirane, D. E. Cox, and S. J. Pickart, J. Appl. Phys. 35, 954 (1964).
- [7] K. Tomiyasu, J. Fukunaga, and H. Suzuki, Phys. Rev. B 70, 214434 (2004).

Fig. 2: Structural and magnetic phase diagram of $Fe_{1-x}Mn_xCr_2O_4$.

*arima@tagen.tohoku.ac.jp