Crystal Orientation of Poly(ε-caprolactone) Blocks Confined in Crystallized Lamellar Morphology of Poly(ε-caprolactone)-*block*-Polyethylene Copolymers. 2. Analysis of Experimental Results

Hikaru NAGAKURA, Tomoki HIGA and Shuichi NOJIMA*

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan

Introduction

We have reported the experimental results for crystal orientation of poly(ε -caprolactone) (PCL) blocks spatially confined in the solid lamellar morphology formed by the crystallization of polyethylene (PE) blocks (PE lamellar morphology) in PCL-*b*-PE copolymers. In this report, we analyze the experimental results, and crystal orientation of PCL blocks was derived as a function of crystallization temperature T_c and confinement size d_{PCL} .

Analysis Method

Crystal Orientation of PCL Blocks The two-dimensional wide-angle X-ray diffraction (2D-WAXD) patterns were first decomposed into those from PE crystals and PCL crystals, and the (110) and (200) diffraction intensities from PCL crystals were plotted as a function of azimuthal angle ϕ . The orientation of PCL crystals confined in the PE lamellar morphology was evaluated from this plot.

Degree of Crystal Orientation The degree of crystal orientation *f* for PCL blocks was calculated by,

$$f = (k^{-1} < \cos^2 \phi > -1)/(k^{-1} - 1) \quad (1)$$

where k represents $\langle \cos^2 \phi \rangle$ at random orientation (usually k = 1/3), and $\langle \cos^2 \phi \rangle$ can be calculated from the ϕ dependence of the (110) diffraction intensity arising from PCL crystals.

Results and Discussion

The 2D-WAXD pattern changed significantly with changing T_c when $d_{PCL} = 8.8$ nm (CL33). That is, when 45 $^{\circ}C \ge T_c \ge 25$ $^{\circ}C$ we had four distinct peaks at off-axis regions, the positions of which were almost independent of T_c . These results mean that the c axis of PCL crystals is perpendicular to the lamellar surface normal. On the other hand, the (110) diffraction curve at 20 $^{\circ}C \ge T_c \ge 0$ $^{\circ}C$

was almost isotropic, suggesting that orientation of PCL crystals is random. When $d_{PCL} = 10.7$ nm (CL38), 11.7 nm (CL46), and 16.5 nm (CL51), we found two distinct diffraction peaks at $\phi = 90^{\circ}$ and 270° at every T_{c} , indicating that the c axis of PCL crystals is parallel to the lamellar surface normal irrespective of T_{c} .

The T_c dependence of f calculated from eq. (1) is plotted in Fig. 1 for PCL-*b*-PE with various d_{PCL} . We find that when 16.5 nm $\geq d_{PCL} \geq 10.7$ nm f is constant irrespective of T_c , while it depends significantly on T_c when $d_{PCL} = 8.8$ nm. The orientation of PCL crystals is schematically shown in Fig. 2 at various T_c and d_{PCL} . From these results we can conclude that the PE lamellar morphology plays a similar role to glassy microdomains regarding spatial confinement against subsequent PCL crystallization.

* snojima@polymer.titech.ac.jp

Fig. 1. Degree of PCL crystal orientation plotted against T_c for PCL-*b*-PE with various d_{PCL} .

Fig. 2. Schematic illustration showing the orientation of PCL crystals spatially confined within the PE lamellar morphology at different d_{PCL} and T_{c} .