# Crystal Orientation of Poly(ɛ-caprolactone) Homopolymers Confined in Cylindrical Nanodomains. 2. Analysis of Experimental Results

Ken-ichi KADENA, Yuya OHGUMA and Shuichi NOJIMA\*

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, H-125, 2-12-1 Ookayama, Meguro-ku Tokyo 152-8552, Japan

### **Introduction**

We have reported the results of crystal orientation for homopolymers and block chains both confined within identical cylindrical nanodomains [1]. In this report, we analyze the experimental results and try to elucidate the difference in crystal orientation between both chains as a function of crystallization temperature  $T_c$ .

## **Experimental Section**

**Sample** The copolymer used in this study is  $poly(\varepsilon)$ -caprolactone)-*block*-polystyrene (PCL-*b*-PS) with a photocleavable *o*-nitrobenzyl group between PCL and PS blocks. The sample was subjected to the rotational shear at 120 °C to orient the nanocylinders. Subsequently, UV with 200 mW in intensity and wavelength longer than 300 nm was irradiated to the sample to cleave the *o*-nitrobenzyl group, and eventually we obtained PCL homopolymers confined in oriented nanocylinders.

*Measurements* The morphology formed was measured using 1D synchrotron small-angle X-ray scattering (SR-SAXS) and 2D conventional SAXS. The orientation of PCL crystals was investigated using 2D wide-angle X-ray diffraction (2D-WAXD). The SR-SAXS experiment was performed at beam line BL-10C in KEK-PF.

**Analysis of data** The WAXD intensity at selected diffraction angles was plotted as a function of azimuthal angle  $\phi$  after subtracting the background scattering to evaluate the degree of PCL crystal orientation *f*. We evaluated  $\phi$  from the second-order moment of the orientation distribution function using the (100) diffraction profile.

#### **Results and Discussion**

We found two clear diffractions in every WAXD pattern in addition to the amorphous halo arising from the

amorphous components. They corresponded to the (110) diffraction at  $2\theta = 21.41^{\circ}$  and the (200) diffraction at  $2\theta = 23.76^{\circ}$ . When we plotted the (110) diffraction intensity against  $\phi$  we found four distinct peaks at offaxis regions, the positions of which were almost independent of  $T_{\rm c}$ . When we plotted the (200) diffraction intensity we had two diffuse peaks centered at  $\phi = 0^{\circ}$  and 180°. If we assume that the b axis of the unit cell for PCL crystals is oriented parallel to the long axis of nanocylinders, we can satisfactorily explain these results.

We calculated f as a function of  $T_c$  both for PCL blocks and PCL homopolymers, and the results are shown in Figure 1. Though f is small and similar for both cases at lower  $T_c$  (-60°C  $\leq T_c \leq$  -54°C), it increases remarkably with increasing  $T_c$  for PCL homopolymers, indicating that crystal orientation is considerably improved at higher  $T_{\rm c}$ . On the other hand, f increases slightly for PCL blocks, suggesting  $T_c$  does not seriously affect the crystallization process and crystal orientation of PCL blocks. The  $T_{\rm c}$ dependence of f for PCL blocks and PCL homopolymers can be successfully explained by considering the crystal growth mechanism as well as the tethering effect of block chains. Figure 2 illustrates the difference in crystal orientation between PCL homopolymers crystallized at higher temperatures ( $\sim -40^{\circ}$ C) and lower temperatures  $(\sim -60^{\circ}C).$ 

#### [1] PF Activity Report 2008, 26, 139 (2009).

\* snojima@polymer.titech.ac.jp



**Fig. 1.** Degree of crystal orientation plotted against crystallization temperature for PCL blocks and PCL homopolymers.



**Fig. 2.** Schematic illustration showing the difference in crystal orientation between PCL homopolymers crystallized at -40  $^{\circ}$ C (upper) and -60  $^{\circ}$ C (lower).