Structural analyses of Er³⁺-doped Ga₂S₃-GeS₂-Sb₂S₃ glasses by XAFS

Kohei KADONO^{*1}, Manabu ICHIKAWA¹, Kohei FUKUMI², Hiroyuki KAGEYAMA², Takashi WAKASUGI¹

¹Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan ²National Institute of Advanced Industrial Science and Technology (AIST), Ikeda, Osaka 563-8577, Japan

Introduction

Since Ga_2S_3 - GeS_2 - Sb_2S_3 glasses have properties of low phonon energy and high refractive index, wide transmission range, and high solubility of rare-earth ions, the glasses doped with rare-earth ions have received much attention for fluorescence materials in the near- and midinfrared regions. Recently, we have investigated compositional dependences of spectroscopic properties for the Er^{3+} -doped Ga_2S_3 - GeS_2 - Sb_2S_3 glasses and have found that the component, Ga_2S_3 , has large effects on the solubility and therefore the emission efficiency of the Er^{3+} ions.

Here we report the XAFS studies on the network structure and coordination structure around Er^{3+} ions for the glasses their compositional dependences.

Experimental procedures

Undoped and Er-doped glasses were prepared by a conventional method for chalcogenide glasses from metal elements and sulfur as starting materials.

XAFS measurements were performed at PF BL-7C with Si (111) double crystal monochrometer in a transmission mode (Ga and Ge K-edges, and Sb L_{III} -edge) or a fluorescence mode (Er L_{III} -edge). Curve-fitting analyses were performed with the program REX2000 (Regaku Co.). Structural parameters of crystals, Ga₂S₃, GeS₂, Sb₂S₃, and Er₂S₃ were used as references.

Results and Discussion

Table 1 summarizes the structural parameters around the network-forming cations in the glasses of various composition.

Table 1: Coordination numbers and bond distances (Å) between cation and sulfur obtained by XAFS analyses

				5		2
Composition*	Ga		Ge		Sb	
Ga-Ge-Sb	Ν	R	Ν	R	Ν	R
30-40-30	4.4	2.32	3.8	2.20	4.9	2.53
20-50-30	4.7	2.31	3.9	2.20	4.3	2.53
10-60-30	4.3	2.31	3.4	2.20	3.6	2.52
0-70-30			3.4	2.20	4.7	2.52
30-50-20	4.3	2.32	3.3	2.20	6.3	2.51
10-50-40	4.8	2.32	4.0	2.20	5.3	2.52
0-50-50			3.7	2.20	5.0	2.52
Crystals	4	2.32	4	2.19	4	2.61

*Glass compositions are described as cation mol%.

The average coordination numbers around Ga and Ge were 4.5 and 3.6, respectively. These values were almost the same as those of the crystals, Ga_2S_3 and GeS_2 . On the other hand, the average coordination number around Sb was 4.8 which was slightly larger than that of the Sb₂S₃ crystal. The bond distances of Ga-S and Ge-S in the glasses were also the same as those of the crystals while the Sb-S distance was slightly shorter than that of the Sb₂S₃ crystal. The structure of the glasses has been also investigated by means of Raman spectroscopy which suggested that the glass network consists of GaS₄ and GeS₄ tetrahedra, and SbS₃ pyramidal units. Although both results on the structures around Ga and Ge are rather consistent, further investigation is necessary.

Figure 1 shows Fourier transforms of the XAFS functions at Er L_{III} -edge for various glass compositions. The structural parameters obtained by the curve-fittings were presented in Table 2. The coordination number around the Er ion was about 7 and the Er-S bond distance was 2.80 Å. The coordination structure was hardly varied with the glass composition.

Fig. 1. Fourier transforms of XAFS functions at Er L_{III} -edge for glasses of various compositions.

ruble 2. Cool anather bit acture around Er ion	Table 2:	Coordination	structure	around	Er ion
--	----------	--------------	-----------	--------	--------

Ga-Ge-Sb-Er	Ν	R (Å)	DW (Å)
10-60-30-3	7.3	2.80	0.104
20-50-30-3	6.4	2.80	0.093
30-40-30-3	6.6	2.79	0.105
10-50-40-1	6.9	2.80	0.104
20-50-30-1	7.3	2.81	0.097
30-50-20-1	6.7	2.81	0.086
Er_2S_3 crystal	6.5	2.73	0.102

References

[1] V. Moizan, et al., Opt. Mater. 31, 39 (2008).

* kadono@kit.ac.jp