## 12C/2008G509

# **XAFS** analysis of Bismuth Nanoparticles

H. Ikemoto<sup>1</sup>, H. Maekawa<sup>1</sup>, Y. Okuda<sup>1</sup> and T. Miyanaga<sup>2</sup> <sup>1</sup>Faculty of Science, University of Toyama, Gofuku 3190, Toyama 930-8555, Japan <sup>2</sup>Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

## Introduction

Bismuth has a hierarchic structure which would bring about exotic characters to the Bi nanoparticles. Raman scattering measurements of Bi nanoparticles exhibit a phase transition from rhombohedral Bi nanocrystalline to amorphous like nanoparticles depending on nanoparticles size [1].

XAFS is a powerful tool for studying the local structure of disordered and nanoparticles[2] [3]. For some materials (for examples, the Bi nanoparticles) it is difficult to deduce reasonable XAFS functions from X-ray absorption spectrum. In the present study we report a method for obtaining reasonable XAFS functions for Bi LIII-edge.

## **Experimental**

Bismuth and NaCl were slowly deposited alternately onto substrates cooled by water. The ratio of the thickness of Bi to that of NaCl was 1:20. The formed Bi films were discontinuous with isolated island formation. The XAFS spectra were obtained on Bi LIII edge with transmission mode at BL12C of Photon Factory.

#### **Results and Discussion**

One of the most difficult problems for obtaining of XAFS functions is the extraction of absorption by a hypothetically isolated atoms. We have used a method proposed by Matsubayashi et al. [4]. But in the case of the Bi nanoparticles it is difficult to extract the hypothetically isolated atoms. In the curve for  $\Delta\mu$ t of the 0.5 nm-thick-films the oscillation above 4 A<sup>-1</sup> is severalfold larger than that below 4 A<sup>-1</sup>, which induces the difficulty for obtaining the XAFS functions. The backscattering amplitude of c-Bi has large value around 3 A<sup>-1</sup>, while it is close to zero around 6 A<sup>-1</sup>.

In order to avoid the difficulty we try to restrict the region for extracting the XAFS functions. Figure 1 shows the XAFS functions obtained with two different regions. One is above 2.0  $A^{-1}$  and the other is above 4.0  $A^{-1}$ . The XAFS oscillations above 6  $A^{-1}$  are same, but those below 6  $A^{-1}$  are different.

Fourier transforms (FT) of the two XAFS functions were performed with the two k-ranges of 2.0-18.0 and 4.0 -18.0  $A^{-1}$ , respectively. To reduce ripples, Hamming window function was used for truncation of the k-range. FT of the k $\chi$  (k) of the 0.5 nm-thick-films at 25 K are shown in Fig. 2. Both of FT have peaks at the same distance of 3.0 °A, but FT which is Fourier transformed at the region of 4.0-18.0  $A^{-1}$  has low background. It is better

that the XAFS functions are extracted and Fourier transformed in the region above  $4.0 \text{ A}^{-1}$ .

## **References**

[1] M. G. Mitch, S.J.Chase, J Fortner, R.Q. Yu and J.S. Lannin, Phys. Rev. Lett., **67** (1991) 875-878

[2] T. Tsuzuki, M. Yao and H. Endo, J. Phys. Soc. Jpn. 64, 485(1995).

[3] S. De Panfilis, A. Filipponi and C. Meneghini, J. Syncrotron Rad. **6**, 549(1999).

[4] H. Sakane, T. Miyanaga, I. Watanabe, N. Matsubayashi, S. Ikeda and Y. Yokoyama, *Jpn. J. Appl. Phys.* **22**, 4641-4647(1993).

\* ikemoto@sci.u-toyama.ac.jp



**Figure 1.** EXAFS functions measured at 25K for the 0.5 nm thick- films obtained with different region for the extraction of the EXAFS functions. Blue dotted line: above  $2.0 \text{ A}^{-1}$ , Red solid line: above  $4.0 \text{ A}^{-1}$ .



**Figure 2.** Fourier transform of  $k\chi(k)$  measured at 25K for the 0.5 nm-thick-films obtained with

different Fourier trasnform regions. Blue dotted line: 2.0-18.0  $A^{-1}$ , Red solid line: 4.0-18.0  $A^{-1}$ . the 0.5 nmthick- films obtained with different region for the extraction of the EXAFS functions. Blue dotted line: above 2.0  $A^{-1}$ , Red solid line: above 4.0  $A^{-1}$ .