Materials Science

Structural properties of the organic superconductor κ_{H} -(DMEDO-TSeF)₂[Au(CN)₄](THF)

Tadashi KAWAMOTO^{*1}, Takehiko MORI¹, Akiko NAKAO², Youichi MURAKAMI², Takashi SHIRAHATA³, and Tatsuro IMAKUBO⁴

¹Department of Organic and Polymeric Materials, Graduate School of Science and Engineering,

Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

²Institute of Materials Structure Science, High Energy of Accelerator Research Organization,

Tsukuba, Ibaraki 305-0801, Japan

³Department of Applied Chemistry, Ehime University, Ehime 790-8557, Japan

⁴Department of Materials Science and Technology, Nagaoka University of Technology, Niigata 940-

2188, Japan

Introduction

Most organic superconductors have been obtained as clean single crystals; the donor molecules and anions are ordered states. Recently, two new organic superconductors with the same chemical composition, κ_1 and κ_{μ} -(DMEDO-TSeF)₂[Au(CN)₄](THF), have been developed [1]. Although the solvent molecule THF of the high- T_c (H) phase is ordered even at room temperature, THF of the low- T_c (L) phase is disordered by the mirror symmetry. We have determined the structural phase transition in the L-phase; the orthorhombic system changes to two monoclinic domains below 209 K [2]. On the other hand, the H-phase has two crystallographically independent conducting layers, A and B. The quantum oscillation of this salt indicates that the interlayer charge disproportionation, where the difference charge is 0.05 degree, occurs despite of a bulk single crystal [3]. The present paper reports the low-temperature crystal structure of the H-phase.

Results and Discussion

The space group is $P2_1/c$, and the lattice parameters at 34 K are a = 38.583(1) Å, b = 10.9621(3) Å, c = 8.1480(4) Å, $\beta = 93.626(5)^{\circ}$, and V = 3439.3(2) Å³. The final *R*-value is R1 = 0.069.

Figure 1: Labeling of the C-S (Se) and C=C averaged central bond lengths in (a) BEDT-TTF and (b) DMEDO-TSeF.

A method for determining experimentally the charges of the BEDT-TTF molecules has been developed using the intramolecular bond lengths [4-6]. Oxidation of the BEDT-TTF molecule lengthens *a* and *d* (C=C bonds), and shortens *b* and *c* (C-S bonds) as shown in Fig. 1(a). The parameter defined as $\delta = (b + c) - (a + d)$ is sensitive to the charge transfer degree of the BEDT-TTF molecule. The parameter δ decreases as the charge transfer degree increases. We should use this method for the present compound on the assumption of the D_{2h} symmetry for the tetraselenafulvalene unit of the DMEDO-TSeF molecule as shown in Fig. 1(b).

The bond lengths defined in Fig. 1(b) of the H-phase at 34 K are listed in Table I.

Table I. Intramolecular bond lengths of DMEDO-TSeF molecules, A and B, of the H-phase at 34 K.

	a (Å)	<i>b</i> (Å)	<i>c</i> (Å)	d (Å)
Molecule A	1.363(8)	1.888(3)	1.897(3)	1.345(6)
Molecule B	1.361(8)	1.888(3)	1.894(3)	1.350(6)

The parameter δ estimated from Table I is 1.08(1) for the A molecule, and is 1.07(1) for the B molecule, respectively. Therefore, we cannot distinguish the difference of the charge between of the A and the B molecules from the bond lengths. This result indicates that the bond lengths are not useful to clarify the interlayer charge disproportionation for the present compound. However, the resonant x-ray scattering method will be a powerful tool for this compound.

References

- [1] T. Shirahata et al., Chem. Commun. 1592 (2006).
- [2] T. Kawamoto et al., Phys. Rev. B 76, 134517 (2007).
- [3] T. Kawamoto et al., ISCOM 2009.
- [4] P. Guionneau et al., Synth. Met. 86, 1973 (1997).
- [5] P. Guionneau et al., Acta Crystallogr. C 56, 453 (2000).
- [6] L-K. Chou et al., Chem. Mater. 7, 530 (1995).

* kawamoto@o.cc.titech.ac.jp