Structural properties of the organic superconductor κ_{H}(DMEDO-TSeF)$_2$[Au(CN)$_4$](THF)

Tadashi KAWAMOTO*, Takehiko MORI†, Akiko NAKAO‡, Youichi MURAKAMI‡, Takashi SHIRAHA TA§, and Tatsuro IMAKUBO¶

1Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
2Institute of Materials Structure Science, High Energy of Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
3Department of Applied Chemistry, Ehime University, Ehime 790-8557, Japan
4Department of Materials Science and Technology, Nagaoka University of Technology, Niigata 940-2188, Japan

Introduction

Most organic superconductors have been obtained as clean single crystals; the donor molecules and anions are ordered states. Recently, two new organic superconductors with the same chemical composition, κ_{L} and κ_{H}-(DMEDO-TSeF)$_2$[Au(CN)$_4$](THF), have been developed [1]. Although the solvent molecule THF of the high-T_c (H) phase is ordered even at room temperature, THF of the low-T_c (L) phase is disordered by the mirror symmetry. We have determined the structural phase transition in the L-phase; the orthorhombic system changes to two monoclinic domains below 209 K [2]. On the other hand, the H-phase has two crystallographically independent conducting layers, A and B. The quantum oscillation of this salt indicates that the interlayer charge disproportionation, where the difference charge is 0.05 degree, occurs despite of a bulk single crystal [3]. The present paper reports the low-temperature crystal structure of the H-phase.

Results and Discussion

The space group is $P2_1/1c$, and the lattice parameters at 34 K are $a = 38.583(1)$ Å, $b = 10.9621(3)$ Å, $c = 8.1480(4)$ Å, $\beta = 93.626(5)^\circ$, and $V = 3439.3(2)$ Å3. The final R-value is $R1 = 0.069$.

![Figure 1: Labeling of the C-S (Se) and C=C averaged central bond lengths in (a) BEDT-TTF and (b) DMEDO-TSeF.](image)

A method for determining experimentally the charges of the BEDT-TTF molecules has been developed using the intramolecular bond lengths [4-6]. Oxidation of the BEDT-TTF molecule lengthens a and d (C=C bonds), and shortens b and c (C-S bonds) as shown in Fig. 1(a). The parameter defined as $\delta = (b + c)-(a + d)$ is sensitive to the charge transfer degree of the BEDT-TTF molecule. The parameter δ decreases as the charge transfer degree increases. We should use this method for the present compound on the assumption of the D_{2h} symmetry for the tetraselenafulvalene unit of the DMEDO-TSeF molecule as shown in Fig. 1(b).

![Figure 1: Labeling of the C-S (Se) and C=C averaged central bond lengths in (a) BEDT-TTF and (b) DMEDO-TSeF.](image)

The bond lengths defined in Fig. 1(b) of the H-phase at 34 K are listed in Table I.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>a (Å)</th>
<th>b (Å)</th>
<th>c (Å)</th>
<th>d (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecule A</td>
<td>1.363(8)</td>
<td>1.888(3)</td>
<td>1.897(3)</td>
<td>1.345(6)</td>
</tr>
<tr>
<td>Molecule B</td>
<td>1.361(8)</td>
<td>1.888(3)</td>
<td>1.894(3)</td>
<td>1.350(6)</td>
</tr>
</tbody>
</table>

The parameter δ estimated from Table I is 1.08(1) for the A molecule, and is 1.07(1) for the B molecule, respectively. Therefore, we cannot distinguish the difference of the charge between of the A and the B molecules from the bond lengths. This result indicates that the bond lengths are not useful to clarify the interlayer charge disproportionation for the present compound. However, the resonant x-ray scattering method will be a powerful tool for this compound.

References

* kawamoto@o.cc.titech.ac.jp