Crystallographic study of the receptor binding domain of the D/C mosaic neurotoxin from *Clostridium botulinum*

Nipawan NUEMKET¹, Yoshikazu TANAKA^{*1,2,3}, Min YAO^{1,3}, and Isao TANAKA^{1,3} ¹Graduate School of Life Sciences, Hokkaido University, Sapporo, 060-0810, Japan ²Creative Research Institution "Sousei," Hokkaido University, Sapporo, 001-0021, Japan. ³Faculty of Advanced Life Sciences, Hokkaido University, Sapporo, 060-0810, Japan

Introduction

Clostridium botulinum, an anaerobic soil bacterium, produces seven botulinum toxin serotypes (BoNTs) designated A - G. BoNTs are also the major causative agents of botulism in human and animals. Recently, BoNTs/OFD05 belonging to type D/C mosaic was found in bovine botulism specimen in Japan [1]. It contains twothirds of the BoNT/D gene and one-third of the BoNT/C gene. The three-dimensional structures of BoNT types B revealed 3 functionally distinct domains: catalytic, translocation and binding domains [2]. The BoNT/OFD05 binding domain has identity with BoNT/C, which requires a single ganglioside as a binding receptor on neuronal cells, unlike BoNT/A and BoNT/B which require two receptors for specific binding [3]. To determine the binding mechanism of BoNT/OFD05 and its ganglioside receptors on neuronal cells, recombinant BoNT/OFD05 receptor binding domain was expressed, purified, and crystallized.

Results and Discussion

The protein was overexpressed as a soluble protein in *E. coli*, purified with Ni affinity chromatography and size exclusion chromatography. After dialysis against 20 mM Tris-Cl pH8.0, 200 mM NaCl, and concentrating up to 1 mg ml⁻¹, the purified protein was crystallized for structural studies. The crystals most suitable for further diffraction experiments were grown with 0.2 M potassium/sodium tartrate, 0.1 M trisodium citrate (pH 5.6), and 1 M ammonium sulfate (Fig. 1). The diffraction

*

Fig.1 Crystal of the binding domain of BoNT-OFD05 for X-ray data collection. The crystal dimensions are approximately $0.7 \times 0.1 \times 0.1$ mm.

dataset of native crystal was collected at a resolution of 2.8 Å from the beamline NW12A. Crystals were soaked in mother liquor containing 30% glycerol and flash-cooled in a stream of liquid nitrogen. The crystals belonged to the $P2_12_12_1$ space group with a unit cell parameters of a=57.8, b=139.0, and c=160.9Å (Table 1). The Matthews coefficient and solvent content, estimated as 3.21 Å³Da⁻¹ and 61.7%, respectively. The initial phasing was performed with the program SHELX by the SAD method at 4 Å resolution with a data collected at Spring-8. The initial phases were transferred into the diffraction data of native crystal and then expanded up to 2.8 Å resolution with the program DM. Further model building is currently underway in our laboratory.

Table 1: Data collection statistics

X-ray source	NW12
Space group	$P2_{1}2_{1}2_{1}$
Unit cell parameters (Å)	<i>a</i> =57.8, <i>b</i> =139.0,
	c=160.9
Wavelength (Å)	1.00000
Resolution range (Å)	50-2.80 (2.90-2.80)
No. of total reflections	223250
No. of unique reflections	32077
Completeness (%)	98.0 (86.2)
$R_{\rm sym}(\%)$	5.8 (31.0)
Multiplicity	7.0 (6.1)

References

[1] K. Nakamura et al., Vet Microbiol 140, 147 (2010).

- [2] S. Swaminathan et al, Nat Struct Biol 7, 693 (2000).
- [3] K Tsukamoto et al., Microb Pathog 44,35164 (2008).

* tanaka@cris.hokudai.ac.jp