High Pressure Science

NE5C/2007G575

Structure and stability of Ni₃S under pressure

Satoru URAKAWA¹, Thoru Watanabe², Takumi KIKEGAWA³ ¹Okayama Univ., Tsushima Naka, Kita-ku, Okayama 700-8530, Japan ²Toyama Univ., Gofuku, Toyama 930-8555, Japan ³ KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Planetary core are thought to consist of iron, nickel, and some light elements, such as sulfur. Iron-nickel sulfides are candidate constituents of planetary core and their physical properties are of important to investigate formation, evolution and present state of planetary core. We had found a new nickel sulfide phase with Ni₃S composition, which was observed as a liquidus phase in quenched samples from melts at 10 GPa [1]. We studied the structure and stability fields of Ni₃S using in-situ Xray observation.

Experimental

High pressure and temperature experiments were conducted up to 10 GPa using the MAX80 system installed at PF-AR NE5C. X-ray diffraction patterns were taken by an energy dispersive method using a Ge-SSD. Pressure was evaluated by the unit cell volume of NaCl pressure marker.

Results and Discussion

Powder X-ray diffraction revealed that Ni_3S is isostructural with Fe₃S reported by Fei et al. [2], which has a Fe₃P-type structure with a tetragonal symmetry (space group I-4). Stability filed of Ni_3S was also determined by X-ray diffraction using a powder mixture of Ni and NiS with Ni₃S composition. Ni₃S forms above 5 GPa, and it breaks down into Ni and Ni₃S₂ below 5 GPa (Fig. 1). Ni₃S melts incongruently into Ni and liquid and its melting temperature gradually increases with pressure.

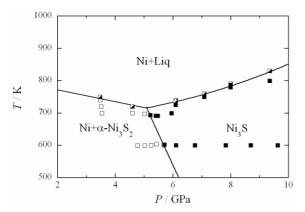


Fig. 1. Phase relations for Ni₃S.

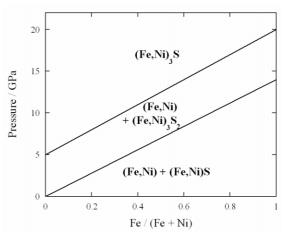


Fig. 2. Schematic phase diagram of $(Fe,Ni)_3S$ composition, indicating stability of $(Fe,Ni)_3S_2$ and $(Fe,Ni)_3S$

Zhang and Fei [3] reported 50 % of Ni can substitute for Fe in Fe₃S at 20 GPa. Present results, therefore, suggest complete solid solution between Fe₃S and Ni₃S above 20 GPa. Fig. 2 shows the possible stability fields for Fe-Ni sulfides for (Fe,Ni)₃S composition at high pressures. Intermediate sulfide compounds always appear at the lower pressure for the Ni-NiS system rather than the Fe-FeS system. Ni₃S₂ is stable still at the atmospheric pressure and Ni₃S forms above 5 GPa, whereas Fe₃S₂ and Fe₃S form at the higher pressure than 14 GPa and 20 GPa, respectively [2,4].

References

- [1] S. Urakawa et al., Am. Mineral. (submitted).
- [2] Y. Fei et al., Am. Mineral. 85, 1830 (2000).
- [3] L. Zhang, Y. Fei, Earth. Planet. Sci. Let., 268, 212 (2008)
- [4] Y. Fei et al., Science, 275, 1621 (1997).

* urakawa@cc.okayama-u.ac.jp