High-pressure studies on the crystal structure of iron-based superconductors

Hiroki TAKAHASHI*1, 2, Hironari OKADA1, 2, Hiroyuki TAKAHASHI1, Yoichi KAMIHARA2, 3, Masahiro HIRANO3, Hideo HOSONO3, Satoshi NAKANO4, and Takumi KIKEGAWA5

1Nihon University, Sakurajosui, Setagaya-ku, Tokyo 156-8550, Japan
2JST-TRIP, Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan
3Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
4National Institute for Material Science, Namiki, Tsukuba, Ibaraki 305-0044
5KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction
The discovery of an iron-based layered superconductor LaFeAsO1-xFx[1] with Tc of 26 K had a significant impact in the field of condensed matter physics and had triggered the rapid development of extensive investigation of superconductivity. In these studies, high-pressure experiments have been played an important role. Large enhancement of Tc under high pressure was revealed for 1111-type iron-based superconductors [2-4], which indicates the pressure effect is one of the important routes to investigate the iron-based superconductors.

Experimental
Polycrystalline samples of 1111-type iron-based superconductors were synthesized by a solid state reaction method [1]. The high-pressure x-ray diffraction measurements were performed using synchrotron radiation at PF-BL18C at High Energy Accelerator Research Organization (KEK) with a wavelength of 0.061642 nm. High-pressure was generated using a diamond anvil cell (DAC) with a liquid pressure-transmitting medium (methanol:ethanol = 4:1).

Results and discussion
The normalized volume V/V0 for LaFeAsO1-xFx and LaFePO as a function of pressure at room temperature are shown in Fig. 1(a). The normalized lattice constants a/a0 and c/c0 are shown in Fig. 1(b), where the c/c0 is more compressible than the a/a0 for both systems, which is usually observed in the layered compounds. Moreover, the value of c/a decreases linearly with applying pressure. The linear compressibility of κc in LaFePO is smaller than the values of LaFeAsO1-xFx. Although a bulk modulus is 1.5 times larger than that of LaFeAsO1-xFx, the pressure dependence of the linear compressibility ratio κc/κa shows the almost same value for both compounds. From these results, the compression curves of the iron-based superconductors are similar to cuprate superconductors. Recently, it is indicated that the Tc correlates with precise crystal parameters, for example, atomic positions, bond angles, and so on [5]. It is necessary to perform further high-pressure x-ray diffraction measurements to determine precise crystal parameters, in order to understand the pressure effect on Tc.

Figure 1. Pressure dependence of (a) the normalized volume V/V0 and (b) the normalized lattice constants a/a0 and c/c0 for LaFeAsO1-xFx,(x=0.05 and 0.11) and LaFePO. The solid curves are guides to eyes.

References

* hiroki@chs.nihon-u.ac.jp