Biological Science

5A, NE3A/2009G017

Crystal structural analysis of the complex of tRNA^{Asp} mutant and Arginyl-tRNA synthetase from *Pyrococcus horikoshii*

Emiko Uchikawa, Michiko KONNO*

Ochanomizu University, Graduate School of Humanities and Sciences, Department of Chemistry and Biochemistry, Tokyo 112-8610 Japan

Introduction

The aminoacyl-tRNA synthetases exhibit in vitro fidelity of one error per 10^4 to 10^5 codons. Surprisingly, it was reported [1] that Saccharomyces cerevisiae arginyltRNA synthetase (ArgRS) in vitro arginylates a noncognate tRNA^{Asp}(GUC) transcript with about 10 fold less efficiency than a cognate tRNAArg(UCU) transcript and further that the k_{cat}/K_m value of tRNA^{Asp} U34 mutant is the same as that of tRNA^{Arg}. These facts reveal that in the anticodon-binding domain of ArgRS, the base U34 of tRNA^{Asp}(UUC) mutant binds at the site accepting U34 of tRNA^{Arg}(UCU). The fact that tRNA^{Met}(CAU) is also arginylated by E. coli ArgRS [2] expects that the bases of the anticodon C34, A35, U36 interact with sites accepting C34, C35 and G36 bases of tRNA^{Arg}, respectively. Taking these reports into consideration, the bases of U35 and C36 of tRNA^{Asp}(UUC) mutant also interact with sites accepting 35^{th} and 36th bases. respectively. tRNA^{Asp}(GUC) is not common to the second base C35 and the third base G36/U36 of the anticodon of tRNA^{Arg} but this paper [1] proposed 'slipped' recognition set hypothesis that in S. cerevisiae tRNA^{Asp}(GUC), C36-G37 may be used in place of C35-G36 of tRNAArg. The relative orientation of G37 base for C36 base in S. cerevisiae tRNA^{Asp}(GUC) [3] is quite different from the relative orientation of G36/U36 base for C35 base in S. cerevisiae tRNA^{Arg}(ICG) [4] and Pyrococcus horikoshii tRNA^{Arg}(CCU) [5] (Figure 1). Therefore, the 'slipped' recognition set hypothesis is less possible. In order to prove that bases of the anticodons of tRNA^{Asp} mutants interact with sites accepting C34, C35, U36 bases of tRNA^{Arg}, we tried crystal structure analysis of the complex of *P. horikoshii* ArgRS and tRNA^{Asp} mutants.

Results

Experiment

The D loop of all *P. horikoshii* tRNA^{Asp} mutants was substituted by that (AGCCA^{17a}GGAC^{20a}A) of *P. horikoshii* tRNA^{Arg}(CCU) such that tRNA^{Asp} does not occur steric obstacle with ArgRS. The nucleotides of anticodon loop of tRNA^{Asp} are CUGUCAC, whereas those of tRNA^{Arg}(CCU) are CUCCUAA. The genes of tRNA^{Asp} mutants with the anticodon of UUC, GUC, CCU were cloned with the T7 promoter into the vector pUC119. The crude transcript was purified by Resource Q column. The crystallizations of complexes of ArgRS and tRNA^{Asp} mutants were tried at the same condition as that of the complex of tRNA^{Arg}. Crystals of the complex of tRNA^{Arg}(**CCU**) hybrid containing the tRNA^{Arg} body and the tRNA^{Arg} anticodon loop grew. The crystal was exposed at 100 K on beamline AR-NE3A at the Photon Factory. The reflections were observed at 4.5 Å resolution but not enough to analyze.

We also constructed the model of tRNA^{Asp}(GUC) and its mutants, C34-C35-U36, U34-U35-C36 on the basis of the structures of complexes of tRNA^{Arg}(ICG) and *S. cerevisiae* ArgRS [4] and of tRNA^{Arg}(CCU) and *P. horikoshii* ArgRS [5] (Figure 1). The anticodon stem and the D stem of tRNA^{Asp}(GUC) [3] were superimposed into those of *S. cerevisiae* tRNA^{Arg}(ICG) bound a ArgRS. Then the backbone of the anticodon loop of tRNA^{Arg}(ICG) is kept and the bases are replaced by those of tRNA^{Asp}(GUC). U35 and C36 are inserted into hydrophobic pockets accepting C35 and G/U36 in ArgRS, respectively.

Figure 1. Model of $tRNA^{Asp}(GUC)$ (thin) [3] and $tRNA^{Arg}$ (**ICG**) (thick) [4] superimposed into $tRNA^{Arg}(CCU)$ (thin) bound *P. horikoshii* ArgRS [5]

References

[1] M. Sissler, R. Giegé, & C. Florentz, *EMBO J*, **15**, 5069-5076, 1996.

[2] L.H.Schulman & H.Pelka, Science 241, 1595-1597, 1989.

[3] M. Ruff et al., Science, 252, 1682-1689, 1991.

[4] B. Delagoutte, D. Moras & J. Cavarelli, *EMBO J*, **19**, 5599-5610, 2000.

[5] M. Konno et al., FEBS J, 276, 4763-4779, 2009.

* konno.michiko@ocha.ac.jp