Structural studies on Ni phosphide catalysts by Operando XAFS

Ara CHO¹, Atsushi TAKAGAKI¹, S. Ted OYAMA*^{1, 2}, Kiyotaka ASAKURA^{*3} ¹Department of Chemical System Engineering, The University of Tokyo, Tokyo 113-8656, Japan ²Virginia Polytech Institute and State University, Blacksburg, Virginia 24061-0211, USA ³Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan

Introduction

Supported nickel phosphides (Ni_2P) catalysts, which show an outstanding capabilities in the hydrotreating of petroleum feed stocks [1], are considered as promising catalysts in the hydrodeoxygenation (HDO) reaction of biomass-derived oil. Especially, Ni_2P supported on K-ion exchanged USY ($Ni_2P/KUSY$) catalysts showed to have higher activity than a commercial NiMoS for the hydrodesulfurization (HDS) of model oils[2].

This study is focused on understanding of the Ni₂P/KUSY structure and of relationship between structural properties and HDO reaction mechanisms.

Experimental

Ni₂P catalysts were prepared with KUSY and silica as supporting materials by incipient wetness impregnation method. Details are described elsewhere [2]. Desired amount of sample, which was calculated with a program SAMPLEM4M, was pelletized and reduced in the quartz reactor. Reduced samples were transferred into the glove box without exposure to air and sealed.

Ni K-edge extended X-ray absorption fine structure (EXAFS) spectra were collected in a transmission mode using a Si (111) monochromator double crystal at room temperature on BL9C beam line. EXAFS data from individual samples were Fourier transformed in the range from 3 to 14 Å⁻¹ and data processing was performed using program WinXAS97.

Results and Discussion

Figure 1 shows the Fourier transformed Ni Kedge EXAFS spectra of various Ni₂P samples and Table 1 summarizes the EXAFS parameters which were obtained as a result of curve-fitting[3]. In Figure 1, the first peak appeared at around 1.7 Å corresponds to a Ni-P (I) bond whose coordination number is almost 2 in both cases as was found in reference. The second peak appeared at around 2.3 Å corresponds to Ni-Ni bonds. This peak was weakened in the supported catalysts, which means small size of the particles [3]. Highly dispersed Ni₂P/KUSY catalyst may induce high activity in HDO reaction which requires hydrogenation activity.

Figure 1. Fourier transformed Ni K-edge EXAFS of the Bulk Ni_2P , $Ni_2P/KUSY$ and Ni_2P/SiO_2 .

Table 1: EXA	AFS parameter	rs for Ni ₂	P/KUSY	and
	NT. D/C.	0		

$N_{12}P/S_1O_2$				
	Ni-P(I)	Ni-Ni		
Reference				
CN	2	4		
R/Å	2.27	2.68		
Ni ₂ P/KUSY				
CN	2.1	2.4		
R/Å	2.23	2.64		
$\sigma^2/ \text{\AA}^2$	0.0008	0.0081		
Ni ₂ P/SiO ₂				
CN	2.0	2.6		
R/Å	2.22	2.66		
$\sigma^2/\text{\AA}^2$	0.0024	0.0092		

References

[1] S. T. Oyama, J. Catal. 216 (2003) 343.

[2] Y.-G. Lee, Y. Shu, S. T. Oyama, *Appl. Catal. A* **322** (2007) 191.

[3] S. T. Oyama, Y.-G. Lee, J. Catal. 258 (2008) 393.

*ted_oyama@chemsys.t.u-tokyo.ac.jp; askr@cat.hokudai.ac.jp