Anisotropy of functions and thermally structural changes for Cu(II) complexes (in 2010)

Takashiro AKITSU*1
1Department of Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Toyo 162-8601, Japan

Introduction
In recent years, metal-organic frameworks of transition metal complexes have been attracted much attention. Since we have investigated on structures and electronic states of (chiral) copper(II) complexes, thermally-accessible structural changes of Jahn-Teller distortion (local distortion around coordination environment) and global strain of crystal lattice may be one of the important problem to be discussed closely. In this context, we have studied on thermally structural changes for several types of (cyano-bridged) Cu(II)-M bimetallic assemblies [1-5].

Experimental section
Preparation
Slow diffusion of aqueous (of appropriate hydrogen or oxygen isotopes) solution of a precursor complex [CuL_2(H_2O)_2](NO_3)_2 (L = bidendate amine ligand) onto aqueous solution of other metal complexes as counter anions allowed to stand at 298 K for several days to gave rise to resulting precipitates.

X-ray Crystallography
Powder XRD patterns of the complexes were measured at BL-8B (8 keV, λ = 1.54 Å) at 100-300 K.

Results and discussion
For example, we mention the study on chiral [Cu(chxn)_2][Co(CN)_6]·nH_2O (chxn = dianinocyclohexane; comparing with Fe, Co, and Cr or H_2O, D_2O, and H_2^{18}O isotopes.
At 130 K, the crystal data for [Cu(chxn)_2][Co(CN)_6]·nH_2O·nH_2O of these isostructral forms are Triclinic, P1, Z = 1. For the H form: a = 8.3362(11), b = 12.6453(16), c = 16.016(2) Å, α = 105.575(2), β = 99.017(2), γ = 95.841(2) °, V = 1587.75 Å^3.
At 130 K: axial Cu-O = 2.4470(4), 2.4644(3) Å, in-plane Cu-N = 2.7639(4), 2.6286(4), 2.6373(4), 2.6524(4) Å.
For the 18O form: a = 8.317(4), b = 12.651(6), c = 16.025(2) Å, α = 105.662(2), β = 99.080(2), γ = 95.799(2) °, V = 1583.91 Å^3.

Temperature dependence of [Cu(chxn)_2][Co(CN)_6]·nH_2O (the D form) indicated positive thermal expansion as global crystal lattice (Figure 1). Significant structural changes associated with Jahn-Teller effect were observed in mononuclear copper(II) sites rather than cyano-bridged bimetallic framework sites.

In order to understand anisotropy derived from metal-organic frameworks, local coordination bonds of mononuclear copper(II) sites are as follows:
At 100 K: axial Cu-O = 2.431(3), 2.454(3) Å, in-plane Cu-N = 2.753(3), 2.647(3), 2.628(3), 2.646(3) Å.
At 130 K: axial Cu-O = 2.4470(4), 2.4644(3) Å, in-plane Cu-N = 2.7639(4), 2.6286(4), 2.6373(4), 2.6524(4) Å.
At 296 K: axial Cu-O = 2.478(4), 2.496(4) Å, in-plane Cu-N = 2.811(4), 2.651(4), 2.669(4), 2.708(4) Å.

For detailed and clear discussion about anisotropy, we will investigated other bimetallic assemblies, for example [Cu(chxn)_2][Cr_2O_7], having a zig-zag arrangement of Jahn-Teller bonds against crystal lattices.

References

* akitsu@rs.kagu.tus.ac.jp