# Characterization and structural analysis of thieno[3,4-c]pyrrole-incorporated quinoidal terthiophene with dicyanomethylene termini

E. Miyazaki<sup>1</sup>, K. Takeda<sup>1</sup>, M. Shimawaki<sup>1</sup>, I. Osaka<sup>1</sup>, A. Nakao<sup>2</sup>, K. Takimiya<sup>\*1</sup> <sup>1</sup>Hiroshima Univ., Kagamiyama 1-4-1, Higashi-Hiroshima, Hiroshima 739-8527, Japan <sup>2</sup>KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

#### **Introduction**

7,7,8,8-Tetracyanoquinodimethane (TCNQ) and its related compounds have been known as superior electronaccepting molecules and widely studied in the field of charge-transfer complexes. Owing to their low-lying LUMO energy levels, the TCNQ-type compounds have recently focused as n-channel organic semiconductors. Cyclopentene-annulated terthienoquinoidal (1), which is one of classes of the n-channel organic semiconductors, have afforded air-stable, solution-processed n-channel FETs with electron mobility of 0.16 cm<sup>2</sup>/Vs [1].

To strengthen the intermolecular interaction, we have designed a new thienoquinoidal system 2 by modifying the central fused-octyldihydropyrrole ring to form a planar structure. However, the synthetic result of 2 indicated the existence of its oxidized compound 3 with the unambiguous electronic structure [2]. Thus we characterized the structure of 3 by the X-ray analysis.



Fig. 1 Structure of thienoquinoidals (1-3)

#### Experiment

# Sample Preparation

The quinoidal compound (3) was prepared according to our report [2]. Single crystals of **3** suitable for the X-ray structural analysis were obtained by careful recrystallization from *N*,*N*-dimethylformamide (DMF).

### Single crystal X-ray analysis

The crystals of **3** contain the DMF molecules as a crystal solvent, and the single crystal X-ray structural analysis was conducted at 200 K to avoid the efflorescence of the crystals. The measurement was made on a Rigaku DSC imaging plate system by using Simonochromated synchrotron ( $\lambda = 1.0000$ . Å). The structure was solved by the direct method using SHELX-97 [3]. All atoms except for the hydrogen atoms were refined anisotropically, and the hydrogen atoms were calculated.

Crystallographic data for **3**· DMF:  $C_{31}H_{30}N_6OS_3$ (598.82), black needles, 0.30 x 0.05 x 0.02 mm<sup>3</sup>, *triclinic*, spece group *P*-1 (#2), *a* = 8.1389(5), *b* = 11.0698(6), *c* = 18.102(3) Å,  $\alpha$  = 76.233(6),  $\beta$  = 78.218(8),  $\gamma$  = 86.925(4)°, *V* = 1550.6(3) Å<sup>3</sup>, *Z* = 2, R = 0.1043 for 3180 observed reflections (*I* > 2 $\sigma$ (*I*)) and 370 variable parameters, *wR*<sub>2</sub> = 0.2935 for all data.

## Characterization and structural analysis

The molecular structure of **3** obtained by the X-ray strurural analysis is depicted in Fig. 2. The  $\pi$ -framework of **3** containing the thieno[3,4-*c*]pyrrole ring forms a planar structure. Focused on the bond lengths of the the thieno[3,4-*c*]pyrrole moiety, the bond length alternation is observed; the carbon–carbon bond lengths in the fused-pyrrole ring are 1.382(5) and 1.383(4) Å for C(1)–C(2) and C(3)–C(4) bands, respectively, which is rational to be attribute to the double bond character. Thus, **3** was well-characterized as the novel thienoquidal system with the fused-pyrrole ring. These results are consistent with the data of the <sup>1</sup>H- and <sup>13</sup>C- NMR and MALDI-TOF mass spectra.



**Fig. 2** ORTEP diagram of **3**. The DMF molecules are omitted for clarity. Selected bond lengths in the central thieno[3,4-c]pyrrole moiety are depicted in inlet, where the double bond character is represented in the bold face.

# **References**

S. Handa, et al, J. Am. Chem. Soc. 129, 11684 (2007).
K. Takeda, et al, Tetrahedron Lett. 51, 4375 (2010).
A. M. Sheldrick SHELX 97-Programs for crystal structural analysis, Göttingen, Germany, 1998.

\* ktakimi@hiroshima-u.ac.jp