Topmost-Surface-Sensitive Si-2p Photoelectron Spectra of Clean Si(100)-2×1 Measured with Photoelectron Auger Coincidence Spectroscopy

Takuhiro KAKIUCHI*1, Shogo HASHIMOTO2, Narihiko FUJITA2, Masatoshi TANAKA2, Kazuhiko MASE3, 4 and Shin-ichi NAGAOKA1

1Department of Chemistry, Faculty of Science, Ehime University, 2-5 Bunkyocho, Matsuyama, Ehime 790-8577, Japan
2Department of Physics, Faculty of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
3KEK-PF, Tsukuba, Ibaraki 305-0801, Japan
4Department of Materials Structure Science, School of High Energy Accelerator Science, the Graduate University for Advanced Studies, 1-1 Oho, Tsukuba 305-0801, Japan

Introduction

Topmost surface sites play the most important role in surface chemical reactions. Conventional photoelectron spectroscopy (PES), however, offers averaged information of surfaces, and their surface sensitivity is limited because the inelastic mean free path of low-energy electrons reaches several Ångströms (Å). In the present paper we report Si-2p PES of a clean Si(100)-2×1 surface measured by photoelectron Auger coincidence spectroscopy (PEACS) [1]. Owing to the extremely short escape depth of PEACS electrons [2] (~1.2 Å in the present case), we have succeeded to measure topmost-surface-sensitive Si-2p PES.

Results and Discussions

Figure 1 shows a Si-L23VV Auger electron spectrum of a Si(100)-2×1 clean surface at room temperature. The dashed line at the relative $AEKE = +2.0$ eV shows the energy position taken as trigger signal for Si-2p-Si-L23VV PEACS measurements. Figure 2 shows a conventional Si-2p photoelectron spectrum and a Si-2p-Si-L23VV PEACS spectrum measured in coincidence with Si-L23VV Auger-electrons at the relative $AEKE$ of +2.0 eV (see Fig. 1). These spectra were decomposed into four surface components and one bulk component by a curve fitting using Voigt functions. The peak assignments are also shown in Fig. 2. In the PEACS spectrum the component of the Si down-atoms is considerably suppressed (~8%), while the components of the Si up-atoms, the Si 2nd-layer are enhanced (+11% and +13%), suggesting that the major L23VV Auger components at relative $AEKE$ of +2.0 eV are the Si up-atoms and the Si 2nd-layer. Since PEACS can be applied to any surfaces, the present study opens a new approach to identify PES components.

References

* kakiuchi.takuhiro.mc @ehime-u.ac.jp