XAFS Characterization of Au Nanoparticles Supported on Sm-CeO₂

Kyoko K BANDO*1, Biswajit CHOWDHURY2, Sandip MANDAL2, Sudip MAITY3
1AIST, Tsukuba, Ibaraki 305-8565, Japan
2Indian School of Mines, Dhanbad, India
3Central Institute of Mining and Fuel Research, Dhanbad 828108, India

Introduction
In the southern and eastern Asian countries, efficient utilization of abundant biomass resources could be a key technology for not only sustainable development but also mitigation of CO₂ emission. Selective oxidation of alcohols is one of the important techniques for conversion of biomass to useful chemical substances. In addition to that, if molecular oxygen can be utilized as an oxidant material, that would make an environmentally friendly and highly economical chemical process. It is well known that supported Au catalysts show unique reactivity toward selective oxidation reactions with molecular oxygen, and it is also reported that they show high performance in alcohol oxidation. Therefore, we applied the supported Au catalysts to selective oxidation reactions of benzyl alcohol with molecular oxygen, and found that Sm promoted CeO₂ supported Au catalysts show high activity in them. In this work, we conducted XAFS analysis of Au/Sm-CeO₂ to elucidate the structure of active Au sites.

Experimental
The catalyst support material was prepared by a non-hydrothermal sol-gel method with Ce(NO₃)₃·6H₂O and Sm(NO₃)₃·6H₂O as precursors[1]. The content of Sm in the support was 4 mol%. Deposition of Au was conducted by a DP method with HAuCl₄·3H₂O as a Au source[2]. After the deposition treatment, the catalyst was calcined at 573 K for 4 hours.

A catalytic test was conducted with a reaction mixture composed of 4 ml toluene, 4mmmol benzyl alcohol, and 0.1 ml dodecane as an internal standard. Suspension of 0.1 g of catalyst in the reaction mixture was kept at 363 K for 3 h under a bubbling of oxygen at 50 ml/min.

The XAFS experiment was conducted at BL7C and 9C in a transmittance mode and a fluorescence mode. The as-prepared catalysts were pressed into pellets, kept in plastic bags and used as-is for the measurements.

Results and discussion
Catalytic performances were compared among CeO₂, Sm-CeO₂, Au/CeO₂ and Au/Sm-CeO₂. The Au/Sm-CeO₂ catalyst showed the highest conversion of benzyl alcohol (27.4%) with a selectivity of 99% to benzaldehyde. Figure 1 depicts Au L₃-edge XANES spectra observed for Au foil and the catalyst. The XANES spectrum of the catalyst has almost the same profile as that of Au foil, indicating that the Au species in the catalyst were in a metallic state. Figure 2 shows Fourier transformed EXAFS spectrum observed for Au/Sm-CeO₂. Curve-fitting analysis of the main peak from 0.17 – 0.34 nm gives a coordination number of 10.1 and a distance 0.285 nm for Au-Au scattering. This result also confirms the presence of metallic Au nanoparticles on Au/Sm-CeO₂.

References

* kk.bando@aist.go.jp