**Electronic Structure of Condensed Matter** 

# Electronic structure of V<sub>1-x</sub>W<sub>x</sub>O<sub>2</sub> thin films investigated by soft x-ray photoelectron spectroscopy

Enju SAKAI<sup>1,2</sup>, Kohei YOSHIMATSU<sup>1</sup>, Keisuke SHIBUYA<sup>3</sup>, Hiroshi KUMIGASHIRA<sup>1,4,5</sup>, Masashi KAWASAKI<sup>3,6,7</sup>, Yoshinori TOKURA<sup>3,7,8</sup>, and Masaharu OSHIMA<sup>1,2,5</sup> <sup>1</sup>Department of Applied Chemistry The University of Tokyo, Bunkyo-ku, Tokyo, 1138656, Japan <sup>2</sup>CREST, Japan Science Technology Agency (JST),Bunkyo-ku, Tokyo 113-8656, Japan <sup>3</sup>CMRG, Advanced Science Institute, RIKEN, Wako 351-0198, Japan <sup>4</sup>PRESTO, JST, Kawaguchi, Saitama 332-0012, Japan <sup>5</sup>SRRO, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656, Japan, <sup>6</sup>WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan, <sup>7</sup>Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan <sup>8</sup>Multiferroics Project, ERATO, JST, Tokyo 113-8656, Japan

#### **Introduction**

There is a considerable interest in controlling the metal-insulator transition temperature  $(T_{MI})$  of VO<sub>2</sub> from the viewpoint of both device applications and basic understanding of the metal-insulator transition (MIT). The substitution of W ions for V ions in VO<sub>2</sub> films (V<sub>1</sub>,  $_x$ W<sub>x</sub>O<sub>2</sub>) shows an interesting behavior of the  $T_{MI}$  [1]. In a lower doping region ( $x \le 0.08$ ), the  $T_{MI}$  decreases with increasing *x*, leading to a metallic conductivity at almost all the temperatures in a narrow doping region at around *x* = 0.08. With further increasing *x*, another insulating phase appears: the  $T_{MI}$  monotonically increases again in the higher doping region ( $0.08 \le x \le 0.33$ ). The re-entrant behavior strongly suggests that there are different effects of W doping on the lower and higher doping regions.

## **Experimental**

 $V_{1,x}W_xO_2$  ( $0 \le x \le 0.33$ ) thin films with thicknesses of 30–40 nm were grown on Nb-doped TiO<sub>2</sub> (001) substrates by a pulsed laser deposition method [1]. Soft-x-ray photoelectron spectroscopy (PES) measurements were performed at BL-2C to reveal the effect of W doping on the electronic structure of VO<sub>2</sub> thin films.

## **Results and discussion**

Figure 1 shows the PES spectra near the Fermi level  $(E_F)$  of  $V_{1,x}W_xO_2$  films taken at metallic and insulating states, respectively. For x = 0-0.08 films, a peak at  $E_F$  and a broad satellite structure around 1.5 eV are observed for the metallic phase, while a prominent peak at 1.0 eV for the insulating phase. It should be noted that the satellite structure at the metallic phase has a different binding energy from the prominent peak of the insulating one. The spectral changes across the MIT are essentially the same as those of bulk VO<sub>2</sub> [2], indicating that the Peierls-like gap formation is the dominant origin of MIT in this doping region. On the other hand, highly doped samples ( $x \ge 0.17$ ) exhibit the typical behaviour of the Mott insulator: a clear spectral weight transfer from a coherent peak at  $E_F$  to an incoherent peak around 1.2 eV

across the MIT. These results suggest that the origin of the MIT is different between lower and higher W doping regions.

## **References**

K. Shibuya *et al.*, Appl. Phys. Lett. **96**, 022102 (2010).
T. C. Koethe *et al.*, Phys. Rev. Lett. **97**, 116402 (2006).

\* sakai@sr.t.u-tokyo.ac.jp



Figure 1: PES spectra near  $E_{\rm F}$  of  $V_{1-x}W_{x}O_{2}$  thin films