Composition dependence of the three-dimensional Fermi surfaces in the iron pnictide superconductor BaFe₂(As_{1-x}P_x)₂

Teppei YOSHIDA^{1, 2}, Ichiro NISHI¹, Shin-ichiro IDETA¹, Atsushi FUJIMORI^{1, 2}, Masato KUBOTA³, Kanta ONO³, Shigeru KASAHARA⁴, Takasada SHIBAUCHI⁵, Takahito TERASHIMA⁴, Yuji MATSUDA⁵, Masamichi NAKAJIMA¹, Shin-ichi UCHIDA¹, Yasuhide TOMIOKA⁶, Toshimitsu ITO⁶, Kunihiro KIHOU⁶, Chul-Ho LEE⁶, Akira IYO^{2, 6}, Hiroshi EISAKI^{2, 6}, Hiroaki IKEDA⁵ and Ryotaro ARITA^{2, 7} ¹Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan

²JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan

³KEK, Photon Factory, Tsukuba, Ibaraki 305-0801, Japan

⁴Research Center for Low Temperature and Materials Sciences, Kyoto University,

Kyoto 606-8502, Japan

 ⁵Department of Physics, Kyoto University, Kyoto 606-8502, Japan
⁶Nanoelectronic Research Institute, National Institute of Advanced Industrial OScience and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan
⁷Department of Applied Physics, University of Tokyo, Bunkyo, Tokyo 113-8561, Japan

Introduction

While most of experimental results on the iron-pnictide superconductors show an nodeless superconducting gap [1], recent studies of BaFe₂(As_{1-x}P_x)₂[2] show signatures of a superconducting gap with a line node in the results of penetration depth, thermal conductivity measurements [3]. In BaFe₂(As_{1-x} P_x)₂, the substitution of P for As suppresses magnetic order and induces superconductivity with maximum $T_c \sim 30$ K at x~0.3. With more P substitution, the T_c decreases and eventually disappears at x~0.7. In our previous angle-resolved photoemission spectroscopy (ARPES) study, we revealed the three dimensional Fermi surfaces of the optimally doped BaFe₂(As_{1-x}P_x)₂ with $x \sim$ 0.38 [4]. In this work, we have performed ARPES studies of the same system to reveal the composition dependence of the electronic structure in relation to the superconductivity.

Experimental condition

High-quality single crystals of BaFe₂(As_{1-x}P_x)₂ with x=0.6 ($T_c=8$ K) and 0.9 (no superconducting) were grown using the self-flux method. ARPES measurements were carried out at BL-28A using a circularly-polarized light with photon energies ranging between 46 and 67eV. A Scienta SES-2002 analyzer was used with a total energy resolution of ~15 meV and a momentum resolution of ~ 0.02 π/a , where a = 3.92 Å is the in-plane lattice constant. The crystals were cleaved *in situ* at T=10 K in an ultra-high vacuum ~5×10⁻¹¹ Torr.

Result and Discussion

Results of Fermi surface (FS) mapping in the $k_{//} \cdot k_z$ plane were obtained by changing the photon energy as shown in Fig. 1 (a) and (b), where the direction of $k_{//}$ is parallel to the Γ -X direction. The intensity plots were

Fig. 1: Fermi surface mapping of $BaFe_2(As_{1-x}P_x)_2$ in the $k_{//}k_z$ plane obtained by changing the photon energy. Fermi surfaces are obtained by symmetrising the intensity with respect to the symmetric line.

obtained by assuming an inner potential V₀=13.5 eV. We have observed at least two hole FS sheets around the Brillouin zone (BZ) center, and two electron FSs around the BZ corner. While the x= 0.6 result shows at least two warped cylindrical hole Fermi surfaces around the Γ point, the two hole FSs in *x*=0.9 become disconnected around the Γ point. This disconnection deteriorates the nesting properties and, therefore, may lead to the suppression of the superconductivity.

References

- [1] H. Ding et al., Europhys. Lett. 83, 47001 (2008).
- [2] S. Kasahara et al., Phys. Rev. B 81, 184519 (2010).

[3] K. Hashimoto *et al.*, Phys. Rev. B **81**, 220501 (2010).

- [4] T. Yoshida *et al.*, Phys. Rev. Lett. **106**, 11701 (2011).
- *yoshida@wyvern.phys.s.u-tokyo.ac.jp