Electronic structure of iron-based superconductor Sr$_4$V$_2$O$_6$Fe$_2$As$_2$ revealed by angle-resolved photoemission spectroscopy

Kosuke NAKAYAMA1,*, Tian QIAN1,2, Pierre RICHARD2,3, Seigo SOUMA3, Takafumi SATO1, Nan XU2, Yingbo SHI2, Madhab NEUPANE4, Yiming XU4, Xiaoping WANG2, Hong DING2, Gang XU2, Xi DAI2, Zhong FANG2, Peng CHEN2, Haihu WEN2 and Takashi TAKAHASHI1

1Department of Physics, Tohoku University, Sendai 980-8578, Japan
2Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
3WPI Research Center, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
4Department of Physics, Boston College, Chestnut Hill, Massachusetts 02467, USA

Introduction

The discovery of iron-based high-T_c superconductors (Fe-HTSCs) generated fierce debates on the superconducting mechanism. Several theoretical and experimental investigations strongly suggest the importance of interband scattering between hole and electron pockets connected by the antiferromagnetic wave vector $Q = (\pi, \pi)$. However, the recent discovery of Sr$_4$V$_2$O$_6$Fe$_2$As$_2$ raises a question of the validity of this model. Most band calculations predicted that the band structure of Sr$_4$V$_2$O$_6$Fe$_2$As$_2$ does not satisfy the interband scattering condition [1,2]. Compared with other Fe-HTSCs, the distinct characteristic of Sr$_4$V$_2$O$_6$Fe$_2$As$_2$ is the presence of metallic V 3d_ states. Finite hybridization between the V 3d_ and Fe 3d_ bands changes the band topology and destroys the interband scattering condition [1]. On the other hand, there is an argument that if only the Fe-derived bands are taken into account, the bare susceptibility shows a peak at (π, π) similar to other Fe-HTSCs [2]. Furthermore, it has been pointed out that strong on-site electron correlations would remove V 3d_ states from the Fermi level (E_F) [2]. Thus, it is of particular importance to investigate the electronic structure of Sr$_4$V$_2$O$_6$Fe$_2$As$_2$.

Results and discussion

We have performed angle-resolved photoemission spectroscopy (ARPES) on Sr$_4$V$_2$O$_6$Fe$_2$As$_2$ ($T_c \sim 37$ K) [3]. Figures 1(a) and 1(b) show the ARPES spectra in the vicinity of E_F. We observed hole and electron bands which cross E_F centered at $(0, 0)$ and (π, π) points, respectively. Apparently, the observed hole and electron bands are connected by $Q \sim (\pi, \pi)$, suggesting the failure of simple LDA calculations. We adopt a LDA + U approach to understand the band structure of Sr$_4$V$_2$O$_6$Fe$_2$As$_2$ and compared with the experimental band dispersion along high-symmetry lines as shown in Fig. 1(c). We found that highly dispersive bands near E_F are attributed to Fe 3d_ bands [red curves in Fig. 1(c)]. On the other hand, less dispersive bands around 1 eV correspond to V 3d_ states [white curves] that are pushed away from E_F due to the strong correlation effect. The present ARPES results combined with the LDA + U calculation suggest that the V 3d_ orbitals are in a Mott-insulating state and show an incoherent peak or lower Hubbard band at ~ 1 eV. The observed band dispersions near E_F are essentially similar to those in other Fe-HTSCs and suggest the importance of the interband scattering for the superconductivity in Sr$_4$V$_2$O$_6$Fe$_2$As$_2$.

References

* k.nakayama@arpes.phys.tohoku.ac.jp

FIG. 1: (a), (b) ARPES spectra measured around $(0, 0)$ and (π, π) points, respectively, at 40 K with $h\nu = 80$ eV. (c) Second derivative plot of ARPES intensity along high-symmetry lines together with LDA + U band calculations. Red and white curves show the bands derived from Fe 3d_ and V 3d_ states, respectively.