Spin-resolved photoemission study on Dirac-like surface states of ultrathin Bi$_2$Se$_3$ films

Yusuke SAKAMOTO1, Toru HIRAHARA1,*, Yasuo TAKEICHI2, Iwao MATSUDA2, Akito KAKIZAKI2 and Shuji HASEGAWA1

1Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
2Synchrotron Radiation Lab, ISSP, Kashiwa, Chiba 277-8581, Japan

Introduction

Recently there has been growing interest in topological insulators (3D) or the quantum spin Hall (QSH) phase (2D), which are insulating materials with bulk band gaps but have metallic edge states that are formed topologically and robust against any non-magnetic impurity [1]. In a three-dimensional material, the two-dimensional surface states correspond to the edge states (topological metal). Due to the loss of the inversion symmetry, they have spin-filtered properties which are actually the origin of the topological robustness. Since the surface states of Bi$_2$Se$_3$ with Dirac-like linear band dispersion have a very small Fermi wave number, it has been difficult to actually observe the spin-split properties. Therefore in the present study, we have conducted high-resolution spin- and angle- resolved photoemission (SARPES) studies on ultrathin Bi$_2$Se$_3$ films to directly verify their spin polarization.

Experimental

The experiments were performed at BL-19A. The system has a hemispherical analyzer (SPECS Phoibos-150) equipped with a homemade high-yield spin-polarimeter using spin-dependent very-low-energy electron diffraction [1]. A He lamp (He Iα ~21.2 eV) was used as the excitation source and the SARPES spectra were recorded at 150 K with the energy and angle resolutions of 30 meV and 0.7°, respectively. The effective Sherman function in this experiment was 0.3 as calibrated by the spin-polarized secondary electrons from a standard Ni sample. The ultrathin Bi$_2$Se$_3$ films were fabricated in situ at a method similar to the report of Ref. [2]. First, a clean Si(111)-7×7 surface was prepared on an n-type substrate (P-doped, 1-10 Ω·cm at room temperature) by a cycle of resistive heat treatments. The Si(111) β3×$\sqrt{3}$-Bi surface was formed by 1–ML (7.83×1014 cm$^{-2}$) of Bi deposition on the 7×7 surface at 620 K monitored by Reflection High Energy Electron Diffraction. Then Bi was deposited on the β3×$\sqrt{3}$-Bi structure at ~400 K in a Se-rich condition. Such a procedure is reported to result in a smooth epitaxial film formation with the stoichiometric ratio of Bi:Se=2:3 [2]. It is also known that the minimum film thickness that can be achieved in this method is one quintuple layer (1 QL = 10 Å), and the films can be formed QL-by-QL. We have carefully checked the film thickness by monitoring the spot intensity of the RHEED pattern [3] and the film thickness in the present measurements was 8 QL (80 Å).

Results and discussions

Figures 1(a) and (c) show the SARPES spectra (I↑, I↓) near the point along the r-M direction (x direction) for negative (a) and positive (c) emission angles, respectively, and Figs. 1(b) and (d) show the corresponding spin-polarization curves P=$\langle I^\uparrow - I^\downarrow \rangle/(I^\uparrow + I^\downarrow)$ (I^+ I^−). The spin orientation is in the +y (red curves) [-y (blue curves)] direction. The photoemission intensity for the bulk states seems to disperse toward EF as they pull off from normal emission. Another effect may come from a technical problem concerning the He I and/or He II radiation enhancing the background of the spectra.

Figure 1: Spin-resolved ARPES spectra of an 8-QL ultrathin Bi$_2$Se$_3$ film along ther-M direction (x direction) [(a) and (c)] and the spin polarization curves deduced from them [(b) and (d)]. The spin orientation is along ther-K direction (y direction, red (blue) is for +y (-y) direction).

References

* hirahara@surface.phys.s.u-tokyo.ac.jp