Crystal structure of Ferroelectric Silver Niobate AgNbO₃

Shota Matsuyama¹, Masatomo Yashima^{*2}, Rikiya Sano³, Mitsuru Itoh⁴, Kenji Tsuda³, Desheng Fu⁵ ¹Department of Materials Science and Engineering,

Interdisciplinary Graduate School of Science and Engineering, Tokyo Institute of Technology,

Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8502, Japan

²Department of Chemistry and Materials Science, Graduate School of Science and Engineering,

Tokyo Institute of Technology, 2-12-1-W4-17, O-okayama, Meguro-ku, Tokyo, 152-8551, Japan

³Institute of Multidisciplinary Research for Advanced Materials, Tohoku University,

Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan

⁴ Materials and Structures Laboratory, Tokyo Institute of Technology,

Nagatsuta-cho 4259, Midori-ku, Yokohama 226-8503, Japan

⁵ Division of Global Research Leaders, Shizuoka University,

Johoku 3-5-1, Naka-ku, Hamamatsu, 432-8561, Japan

Introduction

Silver niobate- (AgNbO₃-) based compounds are candidates for high frequency/microwave materials, overcoming the conventional BaTiO₃- and PbTiO₃-based piezoceramics. AgNbO₃ has a perovskite-type structure and is a lead-free material. However, the structural origins of these excellent properties of AgNbO₃ and AgNbO₃-based compounds have not been known yet. Crystal structure of ferroelectric AgNbO₃ was refined by the invalid *Pbcm* space group, which cannot yield the ferroelectricity. The purpose of this work is to determine the crystal structure of ferroelectric AgNbO₃ through the synchrotron powder diffraction [1].

<u>Experimental</u>

Synchrotron powder diffraction measurements were carried out at 25.1 °C by a high-angular-resolution multidetector system [2] installed at the BL-4B₂ beam line of Photon Factory. The experimental data were analyzed by the orthorhombic (space group $Pmc2_1$) perovskite-type structure using Rietveld method with a computer program RIETAN-FP [3].

Result and Discussion

Figure 1 shows the Rietveld fitting result for the synchrotron diffraction data of $Pmc2_1$ AgNbO₃ measured at 25.1 °C ($R_{wp} = 8.76\%$, $R_B = 2.34\%$, $R_F = 1.47\%$, a = 15.64773(3) Å, b = 5.55199(1) Å, c = 5.60908(1) Å). Figure 2 shows the refined crystal structure of $Pmc2_1$ AgNbO₃ from synchrotron powder diffraction data taken at 25.1 °C. Notable feature of the crystal structure of $Pmc2_1$ AgNbO₃ is the atomic displacements along the *c* axis. The Nb1 displacement is larger than the Nb2 one. The Ag2 and Ag3 displacements are not equaled. Ag1 atom has a displacement. As a result, $Pmc2_1$ AgNbO₃ has a spontaneous polarization and exhibits ferroelectricity.

Figure 1. Rietveld fitting profiles of synchrotron powder diffraction data of $Pmc2_1$ AgNbO₃ at 25.1 °C. Wavelengths of synchrotron X-ray were 1.20825 Å. Figure (b) is an enlargement of a part of Figure (a).

Figure 2. Refined crystal structure of $Pmc2_1$ AgNbO₃ from synchrotron powder diffraction data taken at 25.1 °C. Polyhedron stands for an NbO₆ octahedron. Gray and green balls stand for Ag and Nb atoms, respectively. Red and black arrows stand for the displacements of Ag⁺ and Nb⁵⁺ ions, respectively.

References

- [1]M. Yashima, S. Matsuyama, R. Sano, M. Itoh, K. Tsuda, and D. Fu. Chem. Mater. 23, 6 (2011).
- [2]H. Toraya, H. Hibino, K. Ohsumi, J. Synchrotron Rad. 3, 75 (1996).
- [3]F. Izumi and K. Momma, Solid State Phenom. 130, 15 (2007).
- * yashima@cms.titech.ac.jp