X-ray induced insulator-metal transition in electron-doped VO$_2$ thin film

Daisuke OKUYAMA*, Keisuke SHIBUYA1, Reiji KUMAI2, Yuuichi YAMASAKI3, Hironori NAKAO3, Youichi MURAKAMI3, Yuujiro TAGUCHI1, Taka-hisa ARIMA4,5, Masashi KAWASAKI1,6,7, Yoshinori TOKURA1,7,8

1CMRG and CERG, ASI, RIKEN, Wako 351-0198, Japan
2Photonics Research Institute, AIST, Tsukuba 305-8562, Japan
3CMRC and Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba 305-0801, Japan
4IMR AM, Tohoku University, Sendai 980-8577, Japan
5RIKEN SPring-8 Center, Sayo 679-5148, Japan
6WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
7Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan
8ERATO-MF, JST, Tokyo 113-8656, Japan

Introduction

Photo-induced phase transition (PIPT) is a fascinating phenomenon. Especially, photo-induced insulator-metal transition can be applied for photo-controlled switching devices. Pr$_x$Ca$_{1-x}$MnO$_3$ and CuIr$_2$S$_4$ bulk-materials show PIPT from charge ordering insulator phase to disorder metal phase [1, 2]. However, in these materials, only small variations of the resistivity are observed. For photo-controlled devices, a large variation of the resistivity at PIPT is preferable.

Experimental results and Discussions

The target material is electron-doped VO$_2$ thin film fabricated on a TiO$_2$ (001) substrate. Hereafter, the concentration of W is described as V$_{1-x}$W$_x$O$_2$ formular. Note that two electrons are doped by substituting the W$^{6+}$ ion for V$^{4+}$ ion. The W-doped VO$_2$ thin films show the metal-insulator phase transitions in a broad range of W-doping concentration [Fig.1 (a)] [3]. Especially, at $x=0.07$, the metallic phase persists down to 2 K. In the vicinity of the critical region at $x=0.065$, we found an x-ray (photo-) induced phase transition. As shown in Fig.1 (b), the peak height of (0 0 2) reflection in the insulator phase (black circle) decreases with increasing the irradiation time at 9 K, which means that the c-lattice constant of VO$_2$ film dramatically changes. The resistivity (red line) simultaneously decreases. Huge changes both in the intensity of (0 0 2) and in the resistivity take place, if the threshold photon flux ($\sim 3 \times 10^{16}$ photons/cm2) is irradiated. Further, this phase transition proceeds with only an x-ray irradiation. The temperature dependence of the lattice constant calculated from the (0 0 2) peak position and resistivity before and after PIPT are shown in Fig.1 (c,d). A simple increase of the lattice constant and resistivity (red color) can be shown below the phase transition temperature ~ 100 K, at which the metal-insulator transition takes place with the dimerization of V$^{5+}$ ions. In contrast, after PIPT, the lattice constant and the resistivity dramatically decrease. This photo-induced phase may have same nature with the metallic phase above 100 K.

This phase seems to collapses above 50 K and then the insulator phase recovers. Detailed information is found in ref. [4].

Fig. 1: (a) Metal-insulator phase diagram of V$_{1-x}$W$_x$O$_2$ thin film. (b) X-ray irradiated-time-dependences of resistivity and the peak top intensity at (0 0 2) reflection in the insulator phase. (c,d) Temperature dependences of lattice constant calculated from the scattering angle of the (0 0 2) reflection (c) and resistivity (d). Red (blue) marks and lines indicate the data before (after) occurrence of the photo-induced phase transition.

References

[4] K. Shibuya et al., to be submitted.

* okuyama@riken.jp