Randomness Effect on Spin/Orbital Order in Perovskite *R*VO₃

Ryuichiro FUKUTA¹, Kazuhiro HEMMI¹, Shigeki MIYASAKA¹, Setsuko TAJIMA¹, Yuichi YAMASAKI², Akiko NAKAO², Hironori NAKAO^{2,*}, Yoichi MURAKAMI² ¹Depertment of Physics, Osaka University, Osaka 560-0043, Japan ²KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

Perovskite RVO_3 (R: rare earth elements or Y) shows two types of spin/orbital order by R-site substitution: Gtype orbital order (G-OO) accompanied with C-type spin order (C-SO), and C-OO with G-SO[1]. On the other hand, the structural randomness, which is caused by the size mismatch of the R-site cations, destabilizes the C-SO/G-OO but stabilizes the G-SO/C-OO[2]. To clarify this anomalous behavior by the randomness, we synthesized the randomness induced RVO_3 : Eu₁. $_x(La_{0.2542}Y_{0.7458})_xVO_3$. The magnitude of the randomness is proportional to x in compounds. The pure material (x=0) EuVO₃ undergoes only the C-SO/G-OO. However, the other ordered state appears by increasing randomness. Then we clarified the orbital pattern of this phase by resonant X-ray scattering measurements.

Experiment

The single crystals $Eu_{1-x}(La_{0.2542}Y_{0.7458})_xVO_3$ were synthesized by floating-zone method. The resonant X-ray scattering measurements for randomness introduces material with x = 1.0 of this compounds with (100) surface were performed at beam line 4C. The incident Xray was polarized and the energy tuned near V *K*-edge (~5.48 keV). In order to analyze whether the polarization of the scattered beam is parallel (π' polarization) or perpendicular (σ' one) to the scattering plane, we used a pyrolitec graphite (004) crystal.

Results and Discussion

Fig. 1 (a) shows the energy dependence of the intensity of (100) reflection at various temperatures. This reflection does not obey the extinction rule but corresponds to the propagation vectors for C-OO. The symmetry of the degenerated orbital states at each V3+ site can be investigated through azimuthal angle dependence of orbital reflections. As shown in Fig. 1 (b), the (100) reflection normalized by the (200) fundamental one at the V K-edge is maximum with the incident beam $E_i \parallel b$ configuration and nearly vanishes with $E_i \parallel c$. Model calculations for π' and σ' components in C-OO are also shown as red solid and dashed line, respectively. In our calculations, the atomic scattering tensor of each V³⁺ ion is the same as that in Ref. [3] and the structural distortion, estimated by the Rietveld analysis for the *x*=1.0 sample, is The good agreement between considered. the experimental and calculated data of each component indicates the existence of C-OO at the ground state.

Fig. 2 displays the temperature dependence of the normalized intensity of the (100) reflection with the $E_i \parallel b$ configuration at the V *K*-edge energy. As temperature is increased, the (100) intensity is reduced around T_{SO2} , which corresponds to the magnetic transition temperature measured by magnetization measurement. This fact indicates that not only spin but also *C*-type orbital order occur below T_{SO2} in the randomness induced compound $Eu_{1-r}(La_{0.2542}Y_{0.7458})$, VO₃ x = 1.0.

Fig. 1: (a) Photon-energy spectra of $\sigma' + \pi'$ component of (100) reflection. (b) Azimuthal angle dependence of (100) reflection of π' and σ' components normalized by (200) fundamental one.

Fig. 2: Temperature dependence of integrated intensity of $\sigma' + \pi'$ component of the (100) reflection normalized by the (200) fundamental one at 5.48 keV. Vertical red line indicates the magnetic transition temperature T_{SO2} determined by magnetization measurement.

References

- [1] S. Miyasaka et al., Phys. Rev. B, 68, R100406 (2003)
- [2] J. -Q. Yan et al., Phys. Rev. Lett, 99, 197201(2007).
- [3] M. Noguchi et al., Phys. Rev. B 62, R9271(2000).

* hironori.nakao@kek.jp