11A, 7C, 9A/2009G619

XAFS studies for the elements in the transparent conductive ZnO thin films

Yoshiki Okuhara^{*1}, Yasutoshi Mizuta¹, Yoshihiro Kato², Norifumi Isu², Chiya Numako³ ¹JFCC, 2-4-1 Mutsuno, Atsuta-ku, Nagoya, Aichi 456-8587, Japan ²LIXIL Corporation, 3-77 Minatomachi, Tokoname, Aichi 479-8588, Japan ³ Chiba University, 1-33 Yayo-cho, Inage-ku, Chiba 263-8522, Japan

Introduction

Transparent conductive oxide films have been widely utilized as transparent electrodes for flat panel displays and photo-voltaic solar cells and so on. The authors have developed aluminum-doped zinc oxide (ZnO:Al) films as solar heat shielding coatings [1, 2]. Suitable substitution of doped-Al³⁺ for Zn²⁺ sites generates free electrons, which make the films conductive and near-infrared reflective. This study aimed to investigate the influence of the local structure of the doped-Al ions on carrier generation efficiency.

Experimental

Thin films of ZnO:Al were prepared on SiO_2 substrates by reactive sputtering process using metallic Zn and Al targets under Ar+O₂ atmosphere. The sputtering voltage of the Al target and the oxygen flow rate during sputtering affected not only the Al content but also the carrier generation efficiency.

Zn K-edge XAFS spectra for the ZnO:Al films were measured at the BL-9A and 7C station of the KEK PF rings in fluorescence yield mode using a Lytle detector. Al and oxygen K-edge XANES spectra were acquired at the BL-11A station in total electron yield mode in vacuum ambient ($<10^{5}$ Pa).

Results and Discussions

Although the doped Al ions were dilute (<4 at.%) in the highly conductive ZnO films, the XANES spectra for the Al K-edge were able to be observed. The Al K-edge XANES spectra (1550~1670eV) were similar in shape to the spectra for the Zn K-edge (9650~9670eV) as shown in Fig.1. This result shows the local structure around the doped-Al was analogous to the Zn site, suggesting most of the doped Al substituted in the Zn sites.

The ZnO:Al films with higher carrier generation efficiency was found to have the Al K-edge absorption at higher energy level. Figure 2 indicates a typical result showing the shift in the XANES spectra. The energy resolution for these spectra was improved by narrowing the slit width to 50 μ m. The ZnO:Al film prepared under high O₂ flow rate of 2.15 sccm had the carrier generation efficiency of 4%, while low O₂ flow rate of 1.70 sccm caused drastic enhancement of the efficiency to 66%. Figure 2 shows that the Al ions generating more free electrons provided the Al K-edge absorption at higher energy level. The shift in absorption energy is not due to a band gap widening because there was no shift in absorption energy for the oxygen K-edge XANES spectra.

The shift in the Al K-edge absorption energy preserved similar spectrum shape, implying that the low electron density around the doped-Al ions is attributed to more effective generation of free electrons rather than oxidization of Al.

Fig.1 Typical XANES spectra of (a) the Al K-edge and (b) Zn K-edge for the ZnO:Al films.

Fig.2 XANES spectra of the Al K-edge for the ZnO:Al films. These films were prepared by applying Zn sputtering power of 60W and Al sputtering voltage of 250V under various O, flow rates.

Acknowledgements

This work was supported by NEDO as "The Project of Development of Multi-ceramic Films for New Thermal Insulators".

References

Y. Okuhara et al., Thin Solid Films, 519, 2280 (2010).
Y. Okuhara et al., Mater. Sci. Eng., accepted.

* okuhara@jfcc.or.jp