14B, 15C/2010G538

Local variations in spacing and orientation of GaN crystal by X-ray Topography

Kengo MOCHIKI¹, Yoshikazu SUZUKI¹, Koichi AKIMOTO*¹, Hideo NAMITA², Satoru NAGAO² ¹Deptartment of Quantum Engineering, Nagoya University, Nagoya 464-8603, Japan ²Mitsubishi Chemical Group Science and Technology Research Center, Yokohama 227-8502, Japan

Introduction

Semiconductor, GaN or SiC is expected that it can save energy by half if we use it as an electronic power device. But due to a number of crystal defects, it is difficult to become reality now. About recent GaN or SiC crystal, the measurement of strain field in a broad area around a defect is important to improve crystalline quality. Recent GaN crystal needs measurement method of crystalline quality, local variations in orientation ($\Delta\theta$) and spacing (Δd).

In this study, we measured $\Delta \theta$ and Δd separately in μm order by X-ray topography using CCD camera for GaN which has microstructures. Experiments of X-ray topography were carried out at beamline 14B in the Photon Factory.

Experimental principle [1]

- 1. As shown in Fig. 1(b), when a region which has some $\Delta\theta$ is compared with a region which has no $\Delta\theta$ (Fig. 1(a)), Bragg peak appears at a different angle of $\Delta\theta$. If we rotate sample azimuth angle 180° in plane, Bragg peak appears at a different angle of $-\Delta\theta$, which is opposite angle side compared with before 180° rotation.
- 2. As shown in Fig. 1(c), when a region which has some Δd is compared with a region which has no Δd (Fig. 1(a)), Bragg peak appears at a different angle. However, even if we rotate the sample azimuth angle 180° in plane, Bragg peak appears at the same angle position as before 180° rotation.

Results & Discussion

Fig. 2 and Fig. 3 show analyzed $\Delta\theta$ and Δd for the same area of c-plane GaN crystal, respectively. In Fig. 3, there are large $\Delta d/d$ (10⁻⁴ order) regions, although most of the regions are 10⁻⁵ order. In this large $\Delta d/d$ region, the sign of $\Delta\theta$ changes as shown in Fig. 2.

Reference

[1] S. Kikuta, K. Kohra, and Y. Sugita, Jpn. J. Appl. Phys., 5, 1047, 1966.

*akimoto@cc.nagoya-u.ac.jp

Fig. 1. Experimental principle of separation of $\Delta \theta$ and $\Delta d.$

Fig. 2. Analyzed $\Delta \theta$ from experimental data.

Fig. 3. Analyzed $\Delta d/d$ from experimental data.