High-pressure synthesis and phase transformation of LiNbO$_3$-type oxide

Kie TANAKA1, Yoshiyuki INAGUMA1,*, Daisuke MORI1, Akihisa AIMA1, Hiroshi KOJITANI1, Masaki AKAOGI1, Tetsuhiro KATSUMATA2, Satoshi NAKANO3, Takumi KIKEGAWA4

1Gakushuin Univ., Mejiro, Toshima-ku, Tokyo 171-8588, Japan
2Tokai Univ., Kitakaname, Hiratsuka, Kanagawa, 259-01292, Japan
3National Institute for Materials Science, Namiki, Tsukuba, Ibaraki 305-0044, Japan
4KEK-PF, Tsukuba, Ibaraki 305-0801, Japan

Introduction

LiNbO$_3$ (LN)-type structure have a common framework with perovskite (Pv)-type ones in terms of MO$_6$ (M : metal) octahedra linking all vertices. In the field of earth science, LN-type phase is considered as unquenchable high pressure Pv-type phase, and several LN-phases have been reported as meta-stable quenched phases [1, 2].

We reported that Pv-PbNiO$_3$ synthesised under high-pressure keeps its structure under ambient pressure and the Pv-phase transforms into the LN-phase by a heat treatment under ambient pressure [3, 4]. However, details of mechanism of phase transformation have not been elucidated. On the other hand, we reported that ZnSnO$_3$ can be synthesized under high-pressure as LN-phase [3, 5].

In this study, we performed synchrotron X-ray diffraction (XRD) measurements to observe the behaviour of LN-type oxides PbNiO$_3$ and ZnSnO$_3$ under high pressure at room and/or high temperature.

Experimental

In-situ powder XRD patterns of LN-type PbNiO$_3$ and ZnSnO$_3$ under high-pressure at room temperature were measured with a diamond-anvil cell (DAC) and imaging plate at BL18C (PF). MeOH – EtOH mixed liquid was used as a pressure-transmitting medium. LN-type PbNiO$_3$ was prepared by a heat treatment of Pv-type PbNiO$_3$. Pv-type PbNiO$_3$ and LN-type ZnSnO$_3$ were synthesized at high-pressure and high-temperature using cubic-anvil-type apparatus.

The reaction between ZnO and SnO$_2$ to form LN-ZnSnO$_3$ at high-pressure and high-temperature was monitored by an in-situ energy dispersive XRD at BL NE5C (PF-AR). High-pressure was then applied using the cubic-anvil-type apparatus, MAX80. Measurements were performed under the same pressure / temperature conditions as synthesis.

Results and discussion

Fig. 1 shows the variation of the unit cell volume (formula unit) with pressure for PbNiO$_3$ and ZnSnO$_3$ at room temperature. PbNiO$_3$ was transformed from LN-type phase into Pv-type phase under about 8 GPa with a decrease in volume of ~4%. Structure refinement of XRD data at 17 GPa revealed that Pv-type PbNiO$_3$ possesses an orthorhombic structure with the space group Pnma independent of pressure.

On the other hand, ZnSnO$_3$ showed no structural phase transition. Pv-phase and another polymorph of ZnSnO$_3$ weren't found in the pressure range up to 24 GPa. This suggests that LN-ZnSnO$_3$ is stable under high-pressure and high-temperature.

From the in-situ XRD studies at high-pressure and high-temperature on the formation of ZnSnO$_3$, we found that in the low pressure range, spinel-type Zn$_2$SnO$_4$ was formed. The formation of LN-ZnSnO$_3$ requires a sufficiently high pressure.

References

*yoshiyuki.inaguma@gakushuin.ac.jp