Ni-supported $Ce_2Zr_2O_x$ (x = 7-8) Catalysts for CH_4 Steam Reforming

Mizuki TADA*¹, Nozomu ISHIGURO^{1,2}, Jun-ichi SOGA², Shenghong ZHANG¹, Yasuhiro IWASAWA²

 ¹ Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.
² Department of Chemistry, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.

Introduction

 $Ce_2Zr_2O_x$ (x = 7-8) was prepared for a support for automobile exhausting catalyst¹, and we have found that Ni-supported $Ce_2Zr_2O_x$ was efficient for methane steam reforming reaction to produce H₂ and CO at H₂O/CH₄=1. The catalytic performance of NiO_y/Ce₂Zr₂O_x (x=7-8) strongly depended on the phase and oxygen content (x) of $Ce_2Zr_2O_x$, showing a unique discontinuity in catalytic activity at x=7.5. The oxidation states and local coordination structures of Ni and Ce species on the catalysts were investigated by Ni K-edge and Ce L_{III}-edge XAFS analysis.

Experimental

Ordered Ce₂Zr₂O₇ solid solution (Ce/Zr=1/1 molar ratio)¹ was prepared by co-precipitation using an aqueous NH₃ solution of Ce(NO₃)₃·6H₂O and ZrO(NO₃)₂·2H₂O, followed by reduction with CO at 1673 K. The sample was calcined at 773 K and impregnated with an aqueous solution of Ni(NO₃)₂·6H₂O, followed by calcination. Ni/Ce₂Zr₂O₇ was prepared by the reduction of NiO/Ce₂Zr₂O₈ with H₂ at 773 K.

XAFS spectra were measured at 293 K at BL-9A (Ce L_{III} -edge) and BL-12C (Ni K-edge) with Si(111) channelcut crystals monochrometer. Ni K-edge XAFS was measured in fluorescence mode, and fluorescent X-rays were detected by a Lytle detector filled with Ar, while incident X-rays were detected by an ionization chamber filled with N₂. Ce L_{III} -edge XANES was measured in transmission mode, and incident and transmitted X-rays were detected by ionization chambers filled with N₂ (30%) + He (70%) and N₂, respectively.

Results and Discussion

Methane steam reforming activity highly depended to the amount of oxygen (x) in Ce₂Zr₂O_x and NiO_y/Ce₂Zr₂O_x (x<7.5) showed significant activity for the reaction. Figure 1 (A) shows the Ce L_{III}-edge XANES spectra of NiO_y/Ce₂Zr₂O_x samples. Ni/Ce₂Zr₂O₇, which was active for CH₄ steam reforming, showed no change in its XANES spectra before or after the CH₄ steam reforming at 923 K. Ce L_{III}-edge XANES data revealed that NiO_y/Ce₂Zr₂O_{7,4} was reduced to Ce₂Zr₂O₇ after the CH₄ steam reforming. In contrast, there was no significant changes Ce L_{III} -edge XANES spectrum of $NiO_y/Ce_2Zr_2O_{7.6}$ and $NiO/Ce_2Zr_2O_8$ after CH_4 steam reforming. Thus, it was indicated that active $NiO_y/Ce_2Zr_2O_x$ (x<7.5) catalysts converted to Ni/ $Ce_2Zr_2O_7$ under the CH_4 steam reforming conditions.

The oxidation states and local coordination structures of the supported Ni species were investigated by Ni Kedge XANES and EXAFS. Similar changes in the XANES spectra of NiO_y/Ce₂Zr₂O_x (x<7.5) were observed at Ni K-edge before and after the CH₄ steam reforming (Figure 1 (B)). Ni species on the active phases converted to metallic Ni species, while oxidized Ni species on inactive phases did not change under the reaction conditions. The curve-fitting analysis of Ni K-edge EXAFS of Ni/Ce₂Zr₂O₇ suggested that the Ni nanoparticles were metallic Ni species, whose Ni-Ni coordination number was 11.1±1.3 at 0.249±0.001 nm.

Figure 1. (A) Ce L_{III} -edge and (B) Ni K-edge XANES spectra of NiO_v/Ce₂Zr₂O_x catalysts before and after the CH₄ steam reforming.

Reference

[1] A. Suda, Y. Ukyo, H. Sobukawa, M. Sugiura, J. Ceram. Soc. Jpn. 2002, 110, 126.

* mtada@ims.ac.jp