XAFS Characterization of Re-Pt Bimetallic Catalyst in ZSM-5 Zeolite for Selective Benzene Oxidation

Shin-ichi NAGAMATSU^{1,2}, Mizuki TADA¹, Takehiko SASAKI³, Linsheng WANG², Yasuhiro IWASAWA^{*2}

¹ Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.

² University of Electro-Communications, Chofu, Tokyo 182-8585, Japan.

³ The University of Tokyo, Kashiwanoha, Chiba 277-8561, Japan.

Introduction

Oxide-supported metal complexes are expected to show unique and tremendous catalysis and to possess the great advantages of both homogeneous and heterogeneous catalysts. We have found that ZSM-5-supported Re-Pt bimetallic catalysts are active for selective benzene oxidation to phenol with NH_3 .¹ The oxidation states and local coordination structures of the supported Re-Pt bimetallic catalysts pretreated under different conditions were investigated by Re L_{III}-edge XANES and EXAFS, and the determined structural parameters were compared to catalytic performances for the phenol synthesis by benzene hydroxylation.

Experimental

ZSM-5-supported Re-Pt bimetallic catalysts were prepared by ion exchange with $[NH_3]_4Pt(NO_3)_2$ in water, followed by filtering and drying, and the subsequent impregnation of methyltrioxorhenium in ethanol solution. After calcination at 773 K, the samples were treated with a flow of NH₃ or a flow of an NH₃-O₂-bezene mixture to activate the catalyst for the selective oxidation of benzene.

Re L_{III}-edge XAFS spectra were measured at 20 K in a transmission mode with a Si(111) channel-cut doublecrystal monochrometer at the BL-9C and BL-12C stations, using ion chambers with N₂(85%)/Ar(15%) and Ar(100%) for I_o and I_t, respectively. XAFS spectra were also measured in a fluorescence mode using a Lytle detector with Ar(100%) for I_f. Phase shifts and backscattering amplitudes were calculated by the FEFF8.0 code. EXAFS data were fitted with IFEFFIT in *R*-space.

Results and Discussion

Figure 1 (left) shows XANES spectra at Re L_{III} -edge for Re(2.5 wt%)-Pt(2.1 wt%)/ZSM-5 samples pretreated with O₂ at 773 K for 0.5 h, NH₃ at 553 K for 2 h, NH₃-O₂-benzene at 493 K for 1 h, and NH₃-O₂-benzene at 493 K for 1 h & H₂O-benzene at 493 K for 18 min. The catalysts pretreated with O₂ at 773 K for 0.5 h, with NH₃-O₂-benzene at 493 K for 1 h, and with NH₃-O₂-benzene at 493 K for 1 h, and with NH₃-O₂-benzene at 493 K for 1 h & H₂O-benzene at 493 K for 18 min were similar to each other, which indicate an oxidized Re state.

Figure 1 (right) shows the Fourier transform of EXAFS data for the Re(2.5 wt%)-Pt(2.1 wt%)/ZSM-5 catalyst pretreated with O_2 at 773 K. The EXAFS Fourier transform was fitted by Re=O at 0.176 nm (CN: 3.3) and Re-O at 0.209 nm (CN: 0.6), which indicates a monomeric [ReO₄] structure bonded to ZSM-5 pore wall.

Figure 2 shows the EXAFS Fourier transform and fitting result for the catalyst after NH₃ pretreatment at 553 K for 2 h, where a cluster formation was suggested by the presence of Re-Re (partially Pt) bonds at 0.270 nm (CN: 2.4) and 0.300 nm (CN: 0.7) besides Re=O at 0.174 nm and Re-O at 0.199 nm. It is suggested that the catalyst after NH₃ pretreatment possesses a cluster structure, but the catalyst in the steady state reaction for the phenol synthesis decomposes to distorted [ReO_x] monomers.

Reference

[1] 王林勝, 唯美津木, 永松伸一, 佐々木岳彦, 岩澤康裕, *触 媒* 54, 147-149, 2012.

* iwasawa@pc.uec.ac.jp