Local Coordination Structures of γ-Al₂O₃-Supported Ir Dimer for Surface-Assisted Transfer Hydrogenation Catalysis

Satoshi MURATSUGU^{*1} and Mizuki TADA¹ ¹ Institute for Molecular Science, Myodaiji, Okazaki, Aichi 444-8585, Japan.

Introduction

A novel oxide-supported Ir dimer, which was found to be active for transfer hydrogenation of aromatic ketones, was prepared on a γ -Al₂O₃ surface. Detail characterization of the supported Ir dimer revealed the surface-assisted transfer hydrogenation catalysis on the supported Ir dimer catalyst. Local coordination structures of the supported Ir dimers were investigated by Ir L_{III}edge XAFS.

Experimental

An Ir dimer $[Ir_2{\eta^5-C_5(CH_3)_5}_2(\mu-CH_2)_2]$ (Ir₂) was impregnated on several oxide supports (γ -Al₂O₃, SiO₂, and MgO) and reacted with surface hydroxyl groups on these surfaces at 473 K for 2 h (Ir₂/ γ -Al₂O₃, Ir₂/SiO₂, and Ir₂/MgO). Hydride intermediate Ir dimer was prepared by the reaction of the supported Ir dimer on γ -Al₂O₃ and isopropanol at 343 K (Ir₂-H₂/ γ -Al₂O₃), and subsequent reaction with acetopheone was performed in toluene at 343 K (Ir₂-Rxn1/ γ -Al₂O₃).

Ru K-edge XAFS was measured at BL9C and BL12C stations with Si(111) double crystal monochrometer. Ionization chambers filled with pure N₂ and Ar gases were used to monitor the incident and transmitted X-rays, respectively. EXAFS spectra were analyzed using REX2000, Ver. 2.3.3, Rigaku. Curve-fitting analysis was carried out in *k*-space and k^3 -weighted EXAFS oscillations were Fourier transformed into *R*-space. The fitting parameters were coordination number (CN), interatomic distance (*R*), Debye–Waller factor (σ^2 ; mean-square-displacement), and the correction-of-edge energy (ΔE_0). Phase shifts and backscattering amplitudes for Ir–Ir and Ir–C (C₅(CH₃)₅) were calculated by using FEFF8 code.

Results and Discussion

The local coordination structure of $Ir_2/\gamma Al_2O_3$ was investigated by the curve-fitting analysis of Ir L_{III}-edge EXAFS data using the results of quantitative analysis of the coordinating ligands (Table 1). The precursor Ir_2 , whose coordination structure was determined by X-ray diffraction, was successfully fitted and the EXAFS oscillation of $Ir_2/\gamma Al_2O_3$ was fitted well with four contributions: Ir–Ir at 0.269 ± 0.001 nm (CN = 1.2 ± 0.2), Ir–C (C₅(CH₃)₅) at 0.245 ± 0.001 nm (CN = 5.0 ± 0.7), Ir–O at 0.212 ± 0.001 nm (CN = 1.9 ± 0.2), and Ir···Al at 0.319 ± 0.001 nm (CN = 1.9 ± 0.2). The Ir–Ir bond distance at 0.269 ± 0.001 nm indicates that the Ir=Ir bond of Ir_2 was stretched to a single Ir–Ir bond on the γAl_2O_3 surface. The CN of Ir···Al (1.9 ± 0.2) at 0.319 ± 0.001 nm suggested that there were two O(Al) species coordinated to the Ir center. The CN of Ir–O/C was estimated to be 3.2 ± 0.2 , where the oxygen and carbon contributions cannot be discriminated by EXAFS curve fitting. The quantitative analysis by GC indicated that one μ -CH₂ ligand remained on the Ir dimer (the CN of Ir–C (μ -CH₂) = 1), and hence the CN of Ir–O was estimated to be 2, which was similar to that of Ir…Al (1.9 ± 0.2).

Ir L_{III}-edge EXAFS revealed that $Ir_2-H_2/\gamma Al_2O_3$ maintained its original dimeric structure with the Ir-Ir bond at 0.267 ± 0.001 nm (CN = 0.9 ± 0.1). It is to be noted that the CN of Ir...Al dropped from 1.9 ± 0.2 at 0.319 ± 0.001 nm to 1.2 ± 0.2 at 0.321 ± 0.001 nm. The CN of Ir–O/C was also reduced from 3.2 ± 0.2 (0.212 ± 0.001 nm) to 2.3 ± 0.2 (0.212 \pm 0.001 nm), indicating that the CN of Ir-O(Al) was reduced from 2 to 1 under the consideration of the Ir–C (μ -CH₂) contribution (CN = 1). These results suggest that the bridged Ir-(OAl)₂-Ir bonds in the $Ir_2/\gamma Al_2O_3$ became a monodentate Ir–O(Al) bond in each Ir center to form $Ir_2-H_2/\gamma Al_2O_3$. It was proposed that the interfacial bond transformation between the Ir dimer $(Ir_2/\gamma Al_2O_3)$ and the γAl_2O_3 surface promoted the formation of the dihydride Ir complex on γ -Al₂O₃ as an intermediate in the transfer hydrogenation.

Table 1 Structural Parameters Determined by Curve-Fitting Analysis of Ir L_{III} -edge EXAFS for $Ir_2/\gamma Al_2O_3$, $Ir_2-H_2/\gamma Al_2O_3$, and $Ir_2-Rxn1/\gamma Al_2O_3$

<u>112-112/ 7-A12O3</u> , and 112-KA11/ 7-A12O3				
Shell	CN	Distance	ΔE_0	σ^2
		/nm	/eV	$/10^{-5} \text{ nm}^2$
$Ir_2/\gamma Al_2O_3 (R_f = 0.15\%)$				
Ir–Ir	1.2 ± 0.2	0.269 ± 0.001	-1	6
$Ir-C(C_5(CH_3)_5)$	5.0 ± 0.7	0.245 ± 0.001	-6	9
Ir–O	3.2 ± 0.2	0.212 ± 0.001	17	5
Ir⋯Al	1.9 ± 0.2	0.319 ± 0.001	20	3
$Ir_2-H_2/\gamma-Al_2O_3$ ($R_f=0.51\%$)				
Ir–Ir	0.9 ± 0.1	0.267 ± 0.001	-2	4
$Ir-C(C_5(CH_3)_5)$	4.9 ± 0.7	0.246 ± 0.001	-10	8
Ir–O	2.3 ± 0.2	0.212 ± 0.001	17	4
Ir⋯Al	1.2 ± 0.2	0.321 ± 0.001	21	4
Ir_2 -Rxn1/ γ -Al ₂ O ₃ (R_f =0.13%)				
Ir–Ir	1.1 ± 0.1	0.268 ± 0.001	0	5
Ir-C $(C_5(CH_3)_5)$	4.9 ± 0.7	0.242 ± 0.001	-9	8
Ir–O	3.2 ± 0.2	0.213 ± 0.001	16	6
Ir⋯Al	2.2 ± 0.3	0.319 ± 0.001	20	5
1 . 00 17	1 20 1		0.01	

Measured at 20 K. $k = 30 - 150 \text{ nm}^{-1}$, R = 0.14 - 0.31 nm.

Reference

[1] M. Tada, S. Muratsugu, M. Kinoshita, T. Sasaki, Y. Iwasawa, *J. Am. Chem. Soc.* **2010**, *132*, 713.

* smura@ims.ac.jp