Effects of Diameter and Dimension of Ordered Mesoporous Metal Oxides as Templates on Formed Pt Nanoparticles and Pt–C Nanocomposites

Kazuki Oka,¹ Teruaki Koizumi,² Takashi Kawase,² Hideaki Yoshitake,² and Yasuo Izumi^{1,*}

¹ Department of Chemistry, Graduate School of Science, Chiba University, Inage-ku, Chiba 263– 8522

² Division of Materials Science and Chemical Engineering, Faculty of Engineering, Yokohama National University, Hodogaya-ku, Yokohama 240–8501

1. Introduction

Significant part of catalysts to make fossil fuel and to convert chemical energy to electricity depends on platinum [1]. It is essential to study the minimum size of Pt particles to perform the decomposition of hydrocarbons and electro-redox reactions of H_2 and O_2 and to maximize available surface Pt atoms in the catalytic reaction space.

In this proposal, effects of diameter and dimension of ordered mesoporous aluminum-silicon oxides on formed Pt nanoparticles and Pt-carbon nanocomposites were investigated using Pt L_3 -edge XANES and EXAFS.

2. Methods

One-dimensional mesoporous ordered Al–SiO₂ Al–MCM-41 (1.1 wt% Al) was purchased from Aldrich. Three-dimensional mesoporous order Al– SiO₂ Al–MCM-48 (1.1 wt% Al) and Al–KIT-6 (1.1 wt% Al) were synthesized. The uniform pore size of Al–MCM-41, Al–MCM-48, and Al–KIT-6 was 3, 3, and 8 nm, respectively. Pt^{II}(NH₃)₄(OH)₂·mH₂O was ion-exchanged with Al–MCM-41, Al–MCM-48, or Al–KIT-6 from aqueous solution [1]. The Pt– exchanged samples were heated in hydrogen at 573 K. The samples were further reacted with acetylene diluted with nitrogen at 973 K. Then, the Al–SiO₂ part was removed by washing with hydrofluoric acid solution. Obtained replica samples were denoted as Pt–C-M41, Pt–C-M48, and Pt–C-K6, respectively.

Pt L_3 -edge XAFS spectra were measured on a beamline 9C. H_2 -treated samples were measured in H_2 atmosphere, but acetylene- or HF-treated samples were measured as exposed to air. The data were analyzed using the package XDAP, XAFS Services International.

3. Results and Discussion

The best-fit results of Pt L₃-edge EXAFS data are listed in Table 1. For Pt–Al–MCM-41, only a Pt–Pt peak appeared. In contrast, coordination numbers (*N*) of Pt–O bond for Pt–Al–MCM-48 and Pt–Al–KIT-6 were 2.5–2.6, suggesting that three-dimensional ordered mesoporous Al–MCM-48 and Al–KIT-6 were susceptible to interact strongly with Pt nanoparticles.

The *N* values of Pt–Pt bonds for Pt–C–M41 and Pt–C-M48 decreased to 2.5-1.2 compared to that for samples before acetylene and/or HF treatments. In contrast, the *N* values of Pt–Pt bonds for Pt–C–K6 did not decrease (3.1–4.2). It was suggested that ordered three-dimensional pores of 8 nm were most suitable to synthesize stable Pt–C nanocomposite for polymer electrolyte fuel cells and other related electro/photocatalysis.

Table 1. Best-fit Results of Pt L_3 -edge EXAFS for Pt–Ordered Mesoporous Metal Oxides (Al–MCM-41, Al–MCM-48, and Al–KIT-6), Acetylene-treated Samples, and HF-treated Samples

Bumpies, and III treated Bumpies				
Sample	Pt–O (or Pt–C)		Pt–Pt	
	N	<i>R</i> (nm)	N	<i>R</i> (nm)
Pt-Al-MCM-41			4.2	2.74
Pt-C-Al-MCM-	1.9	2.16	4.3	2.67
41				
Pt-C-M41	3.6	1.96	2.5	2.81
Pt-Al-MCM-48	2.5	2.15	4.4	2.72
Pt-C-M48	3.6	1.99	1.2	2.80
Pt-Al-KIT-6	2.6	2.15	3.3	2.93
Pt-C-Al-KIT-6	2.2	2.06	3.1	2.59
Pt-C-K6	2.6	2.02	4.2	2.78

Reference

 K. Oka, Y. Shibata, T. Itoi, Y. Izumi, J. Phys. Chem. C, 114, 1260–1267 (2010).

*yizumi@faculty.chiba-u.jp