2C/2011S2-003

Chemical-state resolved depth profile and band discontinuity in TiN/HfSiON gate stack structure with an AlO_x cap layer

Satoshi TOYODA^{1-3*}, Hiroyuki KAMADA¹, Hiroshi KUMIGASHIRA¹⁻³, Masaharu OSHIMA¹⁻³ ¹Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8656, Japan ²JST-CREST, Tokyo 113-8656, Japan

³The University of Tokyo, Synchrotron Radiation Research Organization, Tokyo 113-8656, Japan

Introduction

For sub 32 nm complementary metal-oxidesemiconductor (CMOS) devices, metal/high-dielectric metal oxide (high-k)/Si gate stacked structures with LaO_x and AlO_x cap layers have been widely studied in order to fine-tune threshold voltages for NMOS and PMOS, respectively. One of the most critical issues to be solved in metal/high-k systems is to control the flat-band voltage $(V_{\rm fb})$ after the high-temperature thermal annealing for dopant activation. It is necessary to develop the guidelines for control of the V_{fb} shift in overall stacked structures with a cap layer and to reveal their complicated mechanisms such as Fermi-level pinning and interfacedipole effects. Although the physical origin of the $V_{\rm fb}$ shift has recently been considered to be due to interface dipole at high- k/SiO_2 interfaces, there are few reports on effects of N bonding state and their changes in depth profiles upon annealing. In this study, we have investigated chemical-state-resolved depth profiles and band discontinuity for TiN/HfSiON gate stack structure with the AlO_x cap layer on a Si substrate using backside angleresolved photoemission spectroscopy.

Experimental

The HfSiON dielectric layers were grown by atomic layer deposition (ALD) on SiO₂ interface layers. AlO_x capping layers and TiN gate electrodes were also deposited by ALD processes. Rapid thermal annealing was performed. Photoemission measurements were carried out at BL-2C of the Photon Factory in the High Energy Accelerator Research Organization (KEK), which is equipped with a high performance photoelectron analyzer (VG-SCIENTA SES2002). Angle-resolved corelevel photoemission spectra from the backside of the gate-stacked structures were measured using synchrotron radiation focused beam of 0.1 x 0.5 mm². Photoelectron emission angles (θ_e) were changed from the surface normal to 75° for enhancement of surface sensitivity.

Results and Discussion

Figure 1 shows atomic concentration depth profiles in the SiO₂/high-k/TiN stacked structures without (a) and with (b) the AlO_x cap layer. Depth profile for each sample shows the anticipated stacked structure except for the position of AlO_x compounds and the distribution of N atoms. In other words, depth profiles related to Al and N atoms are significantly changed upon annealing. Although the AlO_x layer is deposited on the HfSiO layer in the asgrown stage, Al atoms diffuse into the interface between the HfSiON and SiO₂ layers during rapid thermal annealing and AlO_x compounds have broad distribution around the HfSiON layer. Core-level intensity ratio of Al 2p to Hf 4f increases for enhancing surface sensitivity by changing emission angle as shown in the inset of Fig. 1(b). which suggests that AlO_x compounds are highly distributed at the high-k/SiO₂ interface rather than throughout the high-k layer. Such concentration of Al atoms at the high-k/SiO₂ interface may control the effective work function for PMOS devices. We note that inserting the AlO_x layer also changes distribution of nitrogen atoms in the HfSiON layer. The total amount of nitrogen atoms decreases by AlO_x layers. High nitrogen concentration in the high-k layer may be originated from the TiN gate electrode, so the insertion of AlO_x layer prevents excess nitrogen diffusion from the electrode. Thus, it is found that effect of the AlO_x capping layer at the interface of high-k/TiN strongly influences depth profile of nitrogen atoms [1].

 References

 [1] S. Toyoda et al., J. Appl. Phys. 110, 104107 (2011).

 *toyoda@sr.t.u-tokyo.ac.jp

Fig. 1; Depth profiles are analyzed using the angleresolved core-level intensity with (a) and without (b) AlO_x cap layer. Core-level intensity ratio of Al 2*p* to Hf 4*f* as a function of θ_e are also shown in the inset of Fig. 1(b).