28A/2009S2-005

Anisotropic superconducting gap in the iron-based superconductor $BaFe_2(As_{1-x}P_x)_2$

Teppei YOSHIDA^{1,2}, Shin-ichiro IDETA¹, Takahiro SHIMOJIMA³, Walid MALAEB⁴, Hakuto SUZUKI¹, Ichiro NISHI¹, Kei SHINADA³, Atsushi FUJIMORI^{1,2}, Kyoko ISHIZAKA³, Shik SHIN⁴, Yosuke NAKASHIMA⁵, Hiroaki ANZAI⁵, Masashi ARITA⁵, Akihiro INO⁵, Hirofumi NAMATAME⁶, Masaki TANIGICHI⁶, Hiroshi KUMIGASHIRA⁷, Kanta ONO⁷, Shigeru. KASAHARA^{8,9}, Takasada SHIBAUCHI⁹, Takahito TERASHIMA⁸, Yuji MATSIDA⁹, Masamichi NAKAJIMA¹, Shinichi UCHIDA^{1,2}, Yasuhide TOMIOKA^{2,10}, Toshimitsu ITO^{2,10}, Kunihiro KIHOU^{2,10}, Chul-Ho LEE^{2,10}, Akira IYO^{2,10}, Hiroshi EISAKI^{2,10}, Hiroaki IKEDA^{2,9} and Ryotaro ARITA^{2,3}
¹Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
²JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo 102-0075, Japan
³Department of Applied Physics, University of Tokyo, Kashiwa 277-8581, Japan
⁵Graduate School of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan
⁶Hiroshima Synchrotron Center, Hiroshima University, Higashi-Hiroshima 739-0046, Japan

⁸Research Center for Low Temperature and Materials Sciences, Kyoto University, Kyoto 606-8502, Japan

⁹Department of Physics, Kyoto University, Kyoto 606-8502, Japan and

¹⁰National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan

Introduction

In the iron-based superconductors, most of the experimental studies have so far indicated that the superconducting (SC) gap is nodeless and opens on the entire Fermi surfaces (FSs) in contrast to the d-wave SC gap in the high- T_c cuprate superconductors. However, some systems such as $BaFe_2(As_{1-x}P_x)_2$ [1] show signatures of line nodes in the SC gap. Experimental determination of the presence or absence of line nodes in momentum space is a crucial test of the order parameter symmetry and, hence, of the pairing mechanism. In a laser angle-resolved photoemission (ARPES) study of $BaFe_2(As_{1-x}P_x)_2$ by Shimojima *et al.* [2], nearly anisotropic, FS-independent superconducting gaps around the Z point have been identified. However, a recent study by Zhang et al. [3] has reported the observation of a horizontal line node on the outer hole Fermi surface around the Z point. In order to resolve the controversy, in this work, we have performed a systematic ARPES study of BaFe₂(As_{1-x} P_x)₂.

Experimental condition

High-quality single crystals of BaFe₂(As_{1-x}P_x)₂ with x=0.3 ($T_c=30$ K) were grown using the self-flux method. Angle-resolved photoemission (ARPES) experiments were carried out at BL 28A of Photon Factory (PF). A Scienta SES-2002 analyzer and a circularly-polarized light were used with the total energy resolution of ~8-10 meV. The crystals were cleaved *in situ* at T=8-13 K in an ultra-high vacuum of ~5 x10⁻¹¹ Torr.

Results and Discussion

In order to investigate the possible existence of line nodes on the electron FSs, a photon energy of hv =40 eVwith a circularly polarized light was used as shown in Fig. 1. Energy distribution curves (EDCs) at Fermi momentum k_F below (T=13K) and above (T=35K) Tc for the inner electron FSs are plotted in Fig. 1(a). The energy shifts of the crossing point between the EDCs below and

Fig.1: Superconducting gap anisotropy observed on the electron FSs around the X point in BaFe₂(As_{1-x}P_x)₂ (x=0.30, T_c=30K). (a) EDCs at k_F taken below (T=13K) and above (T=35 K) Tc for the inner FS. The Fermi angle is defined so that the direction from X to Γ is $\theta_{FS}=0^{\circ}$. Vertical bars indicate the crossing energy between the spectra below and above T_c. (b) Energy of the crossing point for the inner FSs are plotted as a function of Fermi surface angle θ_{FS} .

above T_c . are plotted in Figs. 3(c). These plots indicate that the inner FS has a gap minimum at the edge of the FS ($\theta_{FS}\sim0$ or 180°). Although the minimum gap value appears to be finite, it should be remembered that ARPES has finite k_z resolution (inverse of the photoelectron meanfree-path ~0.5 nm) and, therefore, that a finite gap may appear even at a nodal k_F point unless the line node is directed in the vertical (k_z) direction. Therefore, the deep gap minima in the inner electron FSs are suggestive of line nodes.

References

[1] K. Hashimoto *et al.*, Phys. Rev. B **81**, 220501 (2010).

- [2] T. Shimojima et al., Science 332, 564 (2011).
- [3] Y. Zhang et al., Nature Phys. 8, 371 (2012).
- *yoshida@wyvern.phys.s.u-tokyo.ac.jp