Ferroelectric transition with off-center magnetic Mn$^{4+}$ ions in Sr$_{1-x}$Ba$_x$MnO$_3$

1 School of Physics & Astronomy, Univ. of St Andrews, North Haugh, St Andrews KY16 9SS, UK
2 CMRG&CERG, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan
3 Department of Applied Physics, Univ. of Tokyo, Tokyo 113-8656, Japan
4 Materials Dynamics Laboratory, SPring-8/RIKEN, Sayo, Hyogo 679-5148, Japan
5 Advanced Technology Support Division, RIKEN, Wako, Saitama, 351-0198, Japan
6 CMRC-PF, IMSS, KEK, Tsukuba, 305-0801, Japan
7 Department of Advanced Materials Science, Univ. of Tokyo, Kashiwa 277-8561, Japan
8 Multiferroics Project, ERATO, JST, Tokyo 113-8656, Japan

1 Introduction
Most ferroelectric perovskites discovered so far are non-magnetic due to d electrons on off-center transition metal ions, as exemplified by BaTiO$_3$ and Pb(Zr,Ti)O$_3$. This empirical “d^0-ness” rule can be explained in terms of the stabilization of the ferroelectric distortion by forming a covalent bond between empty d orbitals of transition metal and filled 2p orbitals of oxygen. In contrast, magnetism requires dn states in transition metal ions with n≠0. Such incompatibility between ferroelectric and magnetic properties has been one of the most important challenges in designing new multiferroic materials. Recently, however, several first-principles calculations predicted the ferroelectric ground states in perovskite AMnO_3 (A=Ca, Sr, and Ba), where the magnetic (dn) Mn$^{4+}$ ions move off-center due to strong Mn-O bond covalency. Experimentally, these manganites with a cubic perovskite structure have not been explored, since the hexagonal polymorphs become more stable with increasing the A-site ionic radius. In this study, we have developed a two-step crystal growth technique, consisting of a floating-zone method and high-pressure oxygen annealing (~6 GPa) [1]. This enabled the synthesis of single crystals with the perovskite structure up to 50% Ba substitution.

2 Results and Discussion
Figure 1(a) shows the dependence of lattice constant a on Ba concentration x for Sr$_{1-x}$Ba$_x$MnO$_3$ (0≤x≤0.5). As x increases from 0 to 0.4, the lattice constant at 300 K monotonically increases from 3.807 to 3.856Å with keeping the cubic symmetry. Around x=0.45, the crystal structure changes from cubic to tetragonal, indicating ferroelectric distortion with an elongation of the a-axis. Figure 1(b) shows a magnetoelectric phase diagram for Sr$_{1-x}$Ba$_x$MnO$_3$ as a function of x. The ferroelectric transition temperatures Tc were determined as the temperatures where the tetragonal distortion vanishes. The G-type antiferromagnetic phase is stable for the entire doping range (0≤x≤0.5), although the transition temperature Tc gradually decreases from 230 K (x=0) to 158 K (x=0.5). For x ≥ 0.45, a novel multiferroic phase thus appears below T_N (<T_c), associated with the antiferromagnetic ordering of off-center Mn$^{4+}$ ions.

To further investigate the atomic displacements in the ferroelectric lattice for x=0.5, we have performed the single-crystal structural analysis by using synchrotron x-ray diffraction at BL8A. Figures 1(c) and (d) show the detailed crystal structures at 225 K (above T_N) and at 50 K (below T_N), respectively. All the reflection points are well assigned based on the non-centrosymmetric tetragonal P4mm space group at both temperatures. Noteworthy is that the magnitude of shift of Mn$^{4+}$ ion from the center of the surrounding oxygens is dramatically suppressed below T_N. In particular, the Mn-O-Mn bond significantly deviates from 180° above T_N (~179.4(5)°), but becomes close to 180° below T_N (~179.1(5)°). This may correspond to the spontaneous polarization change by several μC/cm2, indicating huge magneto-electric coupling in the present system.

References

* hs36@st-andrews.ac.uk