2009S2-008

Ferroelectric transition with off-center magnetic Mn⁴⁺ ions in Sr_{1-x}Ba_xMnO₃

H. Sakai^{1,2*}, J. Fujioka³, T. Fukuda⁴, D. Okuyama², D. Hashizume⁵, F. Kagawa³, H. Nakao⁶, Y. Murakami⁶, T. Arima⁷, A.Q.R. Baron³, Y. Taguchi², and Y. Tokura^{2,3,8}

¹ School of Physics & Astronomy, Univ. of St Andrews, North Haugh, St Andrews KY16 9SS, UK

² CMRG&CERG, RIKEN Advanced Science Institute, Wako, Saitama 351-0198, Japan

³ Department of Applied Physics, Univ. of Tokyo, Tokyo 113-8656, Japan

⁴ Materials Dynamics Laboratory, SPring-8/RIKEN, Sayo, Hyogo 679-5148, Japan

⁵ Advanced Technology Support Division, RIKEN, Wako, Saitama, 351-0198, Japan

⁶ CMRC-PF, IMSS, KEK, Tsukuba, 305-0801, Japan

⁷ Department of Advanced Materials Science, Univ. of Tokyo, Kashiwa 277-8561, Japan

⁸ Multiferroics Project, ERATO, JST, Tokyo 113-8656, Japan

1 <u>Introduction</u>

Most ferroelectric perovskites discovered so far are non-magnetic without d electrons on off-center transition metal ions, as exemplified by BaTiO₃ and Pb(Zr,Ti)O₃. This empirical " d^0 -ness" rule can be explained in terms of the stabilization of the ferroelectric distortion by forming a covalent bond between empty d orbitals of transition metal and filled 2p orbitals of oxygen. In contrast, magnetism requires d^n states in transition metal ions with n≠0. Such incompatibility between ferroelectric and magnetic properties has been one of the most important challenges in designing new multiferroic materials. Recently, however, several first-principles calculations predicted the ferroelectric ground states in perovskite AMnO₃ (A=Ca, Sr, and Ba), where the magnetic (d³) Mn⁴⁺ ions move off-center due to strong Mn-O bond covalency. Experimentally, these manganites with a cubic perovskite structure have not been explored, since the hexagonal polymorphs become more stable with increasing the Asite ionic radius. In this study, we have developed a twostep crystal growth technique, consisting of a floatingzone method and high-pressure oxygen annealing (~6 GPa) [1]. This enabled the synthesis of single crystals with the perovskite structure up to 50% Ba substitution.

2 Results and Discussion

Figure 1(a) shows the dependence of lattice constant a on Ba concentration (x) for $Sr_{1-x}Ba_xMnO_3$ ($0 \le x \le 0.5$). As x increases from 0 to 0.4, the lattice constant at 300 K monotonically increases from 3.807 to 3.856Å with keeping the cubic symmetry. Around x=0.45, the crystal structure changes from cubic to tetragonal, indicating ferroelectric distortion with an elongation of the c-axis. Figure 1(b) shows a magnetoelectric phase diagram for $Sr_{1-x}Ba_xMnO_3$ as a function of x. The ferroelectric transition temperatures T_C were determined as the temperatures where the tetragonal distortion vanishes. The G-type antiferromagnetic phase is stable for the entire doping range ($0 \le x \le 0.5$), although the transition temperature T_N gradually decreases from 230 K (x=0) to 185 K (x=0.5). For $x \ge 0.45$, a novel multiferroic phase

thus appears below $T_{\rm N}$ ($< T_{\rm C}$), associated with the antiferromagnetic ordering of off-center Mn⁴⁺ ions.

To further investigate the atomic displacements in the ferroelectric lattice for x=0.5, we have performed the single-crystal structural analysis by using synchrotron xray diffraction at BL8A. Figures 1(c) and (d) show the detailed crystal structures at 225 K (above T_N) and at 50 K (below T_N), respectively. All the reflection points are well assigned based on the non-centrosymmetric tetragonal P4mm space group at both temperatures. Noteworthy is that the magnitude of shift of Mn⁴⁺ ion from the center of the surrounding oxygens is dramatically suppressed below T_N . In particular, the Mn-O-Mn bond significantly deviates from 180° above T_N [\sim 175.4(5)°], but becomes close to 180° below $T_{\rm N}$ [~179.1(5)°]. This may correspond to the spontaneous polarization change by several $\mu C/cm^2$, indicating huge magnetoelectric coupling in the present system.

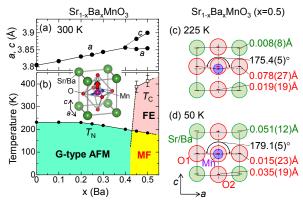


Fig. 1: (a) Lattice constant and (b) phase diagram for Sr_1 . $_xBa_xMnO_3$ as a function of x. PM, AFM, PE, FE, and MF denote paramagnetic, antiferromagnetic, paraelectric, ferroelectric and multiferroic phases, respectively. Detailed crystal structures at (c) 225 K and (c) 50 K are deduced from the single-crystal x-ray diffraction.

References

[1] H. Sakai et al., Phys. Rev. Lett. 107, 137601 (2011).

^{*} hs36@st-andrews.ac.uk