Soft and hard x-ray diffraction studies of DyMnO₃ thin films

Hiroki Wadati^{1,*}, Valerio Scagnoli², Shih-Wen Huang², Urs Staub², Takaaki Sudayama³,

Jun Okamoto³, Yuichi Yamasaki³, Hironori Nakao³, Yoichi Murakami³, Masao Nakamura⁴, Masashi Kawasaki^{1,4}, and Yoshinori Tokura^{1,4}

¹Department of Applied Physics and Quantum-Phase Electronics Center (QPEC),

University of Tokyo, Hongo, Tokyo 113-8656, Japan

²Swiss Light Source, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

³Photon Factory and Condensed Matter Research Center, Tsukuba, Ibaraki 305-0801, Japan

⁴Cross-Correlated Materilas Reserach Group, RIKEN Advanced Science Institute, Wako 351-0198, Japan

Introduction

Recently, there has been a lot of interest in multiferroic materials displaying both ferroelectric and magnetic Orthorhombic (o) RMnO₃ (R denotes rare orders. earth metal) with perovskite structure belongs to this category and can be viewed as prototypical multiferroic materials. The fabrication of the o-RMnO3 thin films has been especially important for device application of the multiferroic materials. Nakamura et al. reported the fabrication of o-YMnO₃ thin films onto the YAlO₃ (010) substrate [1]. By combining soft and hard x-ray diffraction, it was revealed that the magnetic structure of the YMnO₃ thin film is the coexistence of the E-type and the cycloidal states [2]. They also succeeded in fabricating o-DyMnO₃ thin films onto the YAlO₃ (010) substrate. In this study we performed soft x-ray diffraction at Mn $2p \rightarrow 3d$ edges to obtain the information of magnetic ordering and hard x-ray diffraction to investigate lattice distortions in the DyMnO₃ thin film. Our results reveal that the ground state of the DyMnO₃ thin film is very similar to that of the YMnO₃ thin film, that is, the coexistence of the E-type and the cycloidal states.

Experiment

The thin film (40 nm) of DyMnO₃ was grown on a YAlO₃ (010) substrate by pulsed-laser deposition. Hard x-ray diffraction experiments were performed on beamlines 3A at the Photon Factory, KEK, Japan. The photon energy of the incident x-rays was 12 keV.

Results and Discussion

In order to investigate the lattice distortions associated with magnetic order and electric polarization, we performed hard x-ray diffraction measurements of the DyMnO₃ thin film. The commensurate $(0 \ 3 \ 0)$ reflection appears below 35 K as shown in Fig. This reflection is structurally forbidden in the 1. chemical high-temperature structure (Pbnm) and caused by the lattice distortion accompanying ferroelectricity. Interestingly, no incommensurability of this reflection is observed by hard x-ray diffraction, in clear contrast to the observed magnetic reflection. This reflection does appear

below 35 K as can be seen from the temperature-dependent integrated intensity shown in Fig. 1(b). This temperature is lower than the onset of the magnetic reflection of 40 K.

Fig. 1: Temperature dependence of the (0 3 0) peak taken at hv = 12 keV. Peak intensities are plotted as a function of temperature in panel (b).

Our results indicate that the magnetic states of the epitaxial DyMnO₃ thin film is similar to those of the YMnO₃ thin film [2], that is, the coexistence of the E-type and the cycloidal states. In this coexistence region, magnetic reflection is incommensurate and lattice peaks are commensurate because the E-type phase has a much larger lattice distortion than the cycloidal phase. Further studies such as the measurements of electric polarization will be necessary for supporting this scenario.

Acknowledgment

This research is granted by the Japan Society for the Promotion of Science (JSPS) through the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program)," initiated by the Council for Science and Technology Policy (CSTP).

References

- [1] M. Nakamura et al., Appl. Phys. Lett. 98, 082902 (2011).
- [2] H. Wadati et al., Phys. Rev. Lett. 108, 047203 (2012).
- * wadati@ap.t.u-tokyo.ac.jp