8A/2010G529

Third polymorph of the (BEDT-TTF)₂Ag(CF₃)₄(TCE) organic superconductor

Tadashi KAWAMOTO^{*1}, Takehiko MORI¹, Akiko NAKAO², Youichi MURAKAMI², and John A. SCHLUETER³

¹Department of Organic and Polymeric Materials, Graduate School of Science and Engineering,

Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

²Institute of Materials Structure Science, High Energy of Accelerator Research Organization,

Tsukuba, Ibaraki 305-0801, Japan

³Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Introduction

In 1994, Argonne National Laboratory group discovered new organic superconductors based on BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] using the anion of $[M(CF_3)_4]^-$ (M = Cu, Ag, Au) [1,2]. They found that there were low- and high- T_c phases. Although the low- T_c phase was the usual κ -type structure, the structure of the high- T_c phase was unknown. The lattice parameters of the high- T_c phase were presented in 1995, and suggested that the large unit cell contained four ktype conducting layers [2]. We report that the high- T_c phase of the Ag(CF₃)₄ salts has the unusual crystal structure, the dual layered structure (κ - and α '-types), among the organic superconductors. Recently, another research group has succeeded independently the crystal structure analysis for the high- T_c phase of (BEDT-TTF)₂Ag(CF₃)₄(TCE) [3]. However, their result differs from ours; the crystal system is triclinic and the unit cell contains two donor layers, so-called $\kappa \alpha'_1$ -phase. Several results show that there are two kinds of high- T_c phases for the Ag(CF₃)₄ salts ($T_c = 9.4$ K and 11.1 K) [1]. This means that our solved structure ($\kappa \alpha'_2$ -phase) is the third polymorph in the superconducting $Ag(CF_3)_4$ salts. The magnetic torque measurements show that the superconducting critical temperatures are approximately 9.5 K and 11.0 K for the two-layered ($\kappa \alpha'_1$ -phase) and four-layered ($\kappa \alpha'_2$ -phase) phases, respectively.

Results and Discussion

The structure was solved using the direct method (SIR2004) and was refined using the full-matrix leastsquares procedure (SHELXL) [4,5]. Figure 1(a) shows the crystal structure of the high- T_c phase [6]. The chemical composition is $(BEDT-TTF)_2Ag(CF_3)_4(TCE)$, and all molecules are ordered. There are two kinds of donor arrangements, κ - and α '-types, and the unit cell contains four crystallographically independent donors, two independent anions, and two independent solvent molecules. The crystal structure is similar to that of the $\kappa \alpha'_1$ -phase. The charge transfer degrees estimated from the bond lengths of two crystallographically independent molecules in the α '-layer are 0.97(9) and 0.18(10), respectively; the α '-layer is in a charge-ordered state [7]. This indicates that the κ -layer shows superconductivity. To determine the T_c values of the $\kappa \alpha'_{1}$ - and $\kappa \alpha'_{2}$ -phases, the magnetic torque has been measured after examining the lattice parameters using x-ray oscillation photographs. The magnetic torque clearly shows that the $\kappa \alpha'_1$ -phase has a lower T_c than the $\kappa \alpha'_2$ -phase.

In summary, we have found the third polymorph of the title compound with the charge ordered layers. The present structure is similar to the $\kappa \alpha'_1$ -phase recently found in high- T_c Ag(CF₃)₄ salts. The onset superconducting transition temperatures determined from the magnetic torque are approximately 9.5 and 11.0 K for the $\kappa \alpha'_1$ - and $\kappa \alpha'_2$ -phases, respectively.

Figure 1: Crystal structure of the $\kappa \alpha'_2$ -phase (a) and the $\kappa \alpha'_1$ -phase from Ref.3 (b). (c) Temperature dependence of the magnetic torque.

<u>References</u>

- [1] J. A. Schlueter et al., Physica C 233, 379 (1994).
- [2] J. A. Schlueter et al., Adv. Mater. 7, 634 (1995).

[3] J. A. Schlueter et al., J. Am. Chem. Soc. **132**, 16308 (2010).

- [4] M. C. Burla et al., J. Appl. Cryst. **38**, 381 (2005).
- [5] G. M. Sheldrick et al., Acta Cryst. A 64, 112 (2008).

[6] Crystal data of $\kappa\alpha'_2$ -(BEDT-TTF)₂Ag(CF₃)₄(TCE) at 66 K: monoclinic, space group $P2_1/n$, a = 8.4013(2) Å, b = 13.1846(2) Å, c = 75.3636(7) Å, $\beta = 90.1090(13)^\circ$, V = 8347.8(2) Å³, Z = 8, R = 0.1151 for all observed reflections (14775 reflections). The lattice parameters are qualitatively the same as those in Ref. 2.

[7] P. Guionneau et al., Synth. Met. 86, 1973 (1997).

* kawamoto@o.cc.titech.ac.jp