Third polymorph of the (BEDT-TTF)$_2$Ag(CF$_3$)$_4$(TCE) organic superconductor

Tadashi KAWAMOTO*1, Takehiko MORI1, Akiko NAKAO2, Youichi MURAKAMI2, and John A. SCHLUETER3

1Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, O-okayama, Meguro-ku, Tokyo 152-8552, Japan
2Institute of Materials Structure Science, High Energy of Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
3Materials Science Division, Argonne National Laboratory, Argonne, Illinois 60439, USA

Introduction

In 1994, Argonne National Laboratory group discovered new organic superconductors based on BEDT-TTF [bis(ethylenedithio)tetrathiafulvalene] using the anion of [M(CF$_3$)$_3$]$^+$ (M = Cu, Ag, Au) [1,2]. They found that there were low- and high-T_c phases. Although the low-T_c phase was the usual κ-type structure, the structure of the high-T_c phase was unknown. The lattice parameters of the high-T_c phase were presented in 1995, and suggested that the large unit cell contained four κ-type conducting layers [2]. We report that the high-T_c phase of the Ag(CF$_3$)$_4$ salts has the unusual crystal structure, the dual layered structure (κ- and κ'-types), among the organic superconductors. Recently, another research group has succeeded independently the crystal structure analysis for the high-T_c phase of (BEDT-TTF)$_2$Ag(CF$_3$)$_4$(TCE) [3]. However, their result differs from ours; the crystal system is triclinic and the unit cell contains two donor layers, so-called $\kappa\kappa'$-phase. Several results show that there are two kinds of high-T_c phases for the Ag(CF$_3$)$_4$ salts ($T_c = 9.4$ K and 11.1 K) [1]. This means that our solved structure ($\kappa\kappa'$-phase) is the third polymorph in the superconducting Ag(CF$_3$)$_4$ salts. The magnetic torque measurements show that the superconducting critical temperatures are approximately 9.5 K and 11.0 K for the $\kappa\kappa'$- and $\kappa\kappa''$-phases, respectively.

Results and Discussion

The structure was solved using the direct method (SIR2004) and was refined using the full-matrix least-squares procedure (SHELXL) [4,5]. Figure 1(a) shows the crystal structure of the high-T_c phase [6]. The chemical composition is (BEDT-TTF)$_2$Ag(CF$_3$)$_4$(TCE), and all molecules are ordered. There are two kinds of donor arrangements, κ- and κ'-types, and the unit cell contains four crystallographically independent donors, two independent anions, and two independent solvent molecules. The crystal structure is similar to that of the $\kappa\kappa'$-phase. The charge transfer degrees estimated from the bond lengths of two crystallographically independent molecules in the α'-layer are 0.97(9) and 0.18(10), respectively; the α'-layer is in a charge-ordered state [7]. This indicates that the κ-layer shows superconductivity. To determine the T_c values of the $\kappa\kappa'$- and $\kappa\kappa''$-phases, the magnetic torque has been measured after examining the lattice parameters using x-ray oscillation photographs. The magnetic torque clearly shows that the $\kappa\kappa'$-phase has a lower T_c than the $\kappa\kappa''$-phase.

In summary, we have found the third polymorph of the title compound with the charge ordered layers. The present structure is similar to the $\kappa\kappa'$-phase recently found in high-T_c Ag(CF$_3$)$_4$ salts. The onset superconducting transition temperatures determined from the magnetic torque are approximately 9.5 and 11.0 K for the $\kappa\kappa'$- and $\kappa\kappa''$-phases, respectively.

Figure 1: Crystal structure of the $\kappa\kappa''$-phase (a) and the $\kappa\kappa'$-phase from Ref.3 (b). (c) Temperature dependence of the magnetic torque.

References

[6] Crystal data of $\kappa\kappa''$(BEDT-TTF)$_2$Ag(CF$_3$)$_4$(TCE) at 66 K: monoclinic, space group $P2_1/n$, $a = 8.4013(2)$ Å, $b = 13.1846(2)$ Å, $c = 75.3636(7)$ Å, $\beta = 90.1090(13)^\circ$, $V = 8347.8(2)$ Å3, $Z = 8$, $R = 0.1151$ for all observed reflections (14775 reflections). The lattice parameters are qualitatively the same as those in Ref. 2.

* kawamoto@o.cc.titech.ac.jp