Photoresponse of Microphase Separation Structure for Liquid Crystalline Block Copolymers with Azobenzene Mesogens

Hiroki Takeshita^{1,*}, Tomoya Fujise¹, Kazuhiro Haginoya¹, Masamitsu Miya¹, Katsuhiko Takenaka¹ and Tomoo Shiomi¹ ¹Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan

1 Introduction

Liquid crystalline polymers having an azobenzene moiety in the side chain show а liquid crystalline/isotropic (LC/Iso) phase transition caused by tran-cis photoisomerization triggered by UV irradiation. Therefore LC block copolymers with azobenzene mesogens can change reversibly the spacing or morphology of the microphase separation (MS) by the UV-induced LC/Iso transition. In this paper, we will present responsiveness of the MS structure to the LC/Iso transition induced by photoisomerization for the block copolymer composed of azobenzene-type liquid crystalline (PAzo) and rubbery poly(n-butyl acrylate) (PBA) blocks.

2 Experiment

Block copolymers shown in Fig. 1 were synthesized by atomic transfer radical polymerization. The molecular weights of PBA(xx)-P06Azo(yy) are xx and yy thousands, respectively. SAXS experiments were carried out at BL-6A and BL40B2 (Priority Program for Disaster-Affected Ouantum Beam Facilities) at Spring8. DSC and polarized optical microscopy (POM) were also used.

3 Results and Discussion

As shown in Fig. 2, the SAXS peak due to the smectic (Sm) LC structure appears and disappears at UV-off and –on, respectively, for the PAzo homopolymer. This LC

transition is reversible in the repeat of UVon/off. An LC texture observed by POM also disappears at UV-on.

3 Fig. shows profiles for SAXS block copolymers at 80°C. The MS structures can he assigned from the ratio of the position of the peaks to be

1

copolymer.

Structure of the Block

Fig.

Chemical

Fig. 2 SAXS profiles at UV-on/off for LC homopolymer.

lamellar for Azo07, PAzo-cylindrical for Azo05 and PBAcylindrical for Azo17. As shown in Fig. 4, the peak position $q_{\rm m}$ responds reversibly to UV-on/off. Fig. 4 also shows the required time for the change is 20-30 sec. The spacing of the MS structure is larger at UV-off, i.e., in the liquid crystalline state, we reported as previously in the thermotropic liquid crystallization [1-2]. This may be caused by

Fig. 3 SAXS profiles at UVon/off for block copolymers.

the expansion of the main chain toward the microdomain interface.

Fig. 4 The change of the MS peak position in UV-on/off for block copolymers.

Acknowledgment

The SAXS experiments were partially performed under the Priority Program for Disaster-Affected Quantum Beam Facilities (2011A1962).

References

- [1] H. Takeshita et al., Polymer **50** (2009) 271.
- [2] S. Taniguchi et al., Polymer 49 (2008) 4889.

* takeshita@mst.nagaokaut.ac.jp