NW2A/ 2009G636

A superposed kagome-lattice Crystallization of a Keplerate-type polyoxometalate

Masaki Saito and Tomoji Ozeki*

Department of Chemistry and Materials Science, Tokyo Institute of Technology, 2-12-1-H-63 O-okayama, Meguro-ku, Tokyo 152-8551, Japan.

1 Introduction

A frequently occurring packing mechanism for an ionic crystal is to arrange larger ions into a close-packed array and smaller ones into the interstices between the larger In this context, it seems reasonable that the ones. large Keplerate-type exceedingly spherical polyoxometalates, the $[Mo_{72}^{VI}Mo_{60}^{VO}O_{372}(CH_3COO)_{30}]$ $(H_2O)_{72}]^{42-}$ anion (hereafter, abbreviated as $\{Mo_{132}\}$), prefer to crystallize into cubic or trigonal space group types where the huge spherical anions (approximate diameter of 30 Å) adopt strict or slightly distorted cubic However, the $\{Mo_{132}\}$ anion, close packing arrays. which consists of 12 pentagonal [Mo^{VI}₆O₂₁(H₂O)₆]⁶⁻ and 30 $[Mo_2^VO_4(CH_3COO)]^+$ moieties (Figure 1), is not completely isotropic but approximates to the I_h symmetry. It is incompatible with the site symmetry of the spheres in any type of close packings. Therefore, introduction of intermolecular interactions specific to the local structures of {Mo132} could lead to a different and less dense arrangement of the anions. By using Sr^{2+} as counter cations, we succeeded in crystallizing {Mo132} into an unprecedented superposed kagome-lattice structure with huge channels.^[1]

Fig. 1: Structure of $\{Mo_{132}\}$.

2 Experiment

A 15.0 mL aqueous solution dissolving 0.50 g of $(NH_4)_{42}\{Mo_{132}\}\cdot ca.300H_2O\cdot ca.10CH_3COONH_4$ was mixed with a 15.0 mL aqueous solution containing 1.26 g of SrCl₂·6H₂O. The mixed solution was heated to 65 °C for 1.5 h and kept at 40 °C for two weeks. After the solution cooled down to the room temperature, dark red hexagonal prismatic crystals of Sr_{18.5}(NH₄)₅- $[Mo^{V1}_{72}Mo^{V}_{60}O_{372}(CH_3COO)_{30}(H_2O)_{72}]\cdot mH_2O$ (1) were precipitated. Single crystal X-ray diffraction experiment was carried out at the NW2A beamline of PF-AR.

3 Results and Discussion

Compound 1 crystallizes in the space group $P6_3/mmc$. The {Mo₁₃₂} anions are located at the 2/m sites to make a superposed kagome-lattice. The {Mo₁₃₂} anions are connected so as to sandwich hydrated Sr²⁺ cations with their Mo₉O₉ pores. Each connection is supported by two additional Sr^{2+} cations that are directly bound to the terminal O atoms of the two {Mo₁₃₂} anions. At the connections parallel to the crystallographic a, b or a+baxes (perpendicular to the c axis, Figure 4a), two O-Sr-O linkages stem from the Mo atoms that belong to the Mo₉O₉ pores but belong to different [Mo^{VI}₆O₂₁(H₂O)₆]⁶⁻ moieties. The two Mo₂O₂ pores are almost parallel to each other with the dihedral angle of $11.16(1)^{\circ}$ and the distance between two {Mo₁₃₂} is 30.765 Å. Due to the I_h symmetry, {Mo132} can accommodate up to only four Mo₉O₉ pores on a great circle. Therefore, this type of interaction leads to a kagome-lattice sheet of {Mo₁₃₂} spanning parallel to the crystallographic ab plane. Six $\{Mo_{132}\}\$ surrounding the large space at the origin of the unit cell point their $[MoV_2O_4(CH_3COO)]^+$ moieties to the space and they cannot establish similar interactions with another $\{Mo_{132}\}$ in this cavity. As a result, the cavity is left unoccupied by $\{Mo_{132}\}$ and presumably filled with disordered water molecules.

The kagome-lattice sheets are superposed to form a three-dimensional framework as shown in Figure 2. The sheets are connected by a similar interaction between two $\{Mo_{132}\}$ through their Mo_9O_9 pores. The dihedral angle of the two Mo_9O_9 pores is as large as $39.55(1)^\circ$. Thus the two O–Sr–O linkages supporting this connection stem from two Mo atoms that belong to the same $[Mo_6^{VI}O_{21}(H_2O)_6]^{6-}$ moiety but are not in the Mo_9O_9 at the rim of the pore. As a result, the kagome-lattice sheets are arranged so that the cavities of one sheet fall exactly above those of the sheet below, leading to a channel running through the crystal along the *c* axis.

Fig. 2: Superposed kagome lattice of {Mo₁₃₂}.

References

- M. Saito, T. Ozeki, Dalton Trans. (2012) in press, DOI: 10.1039/C2DT30582H.
- * tozeki@cms.titech.ac.jp