Crystallographic analysis of a BphA4 mutant

Miki Senda¹, Ayaka Harada², Akito Nishizawa³, Shigenobu Kimura³ and Toshiya Senda^{*2} ¹JBIC, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan ² BIRC, AIST, 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan ³VBL, Ibaraki University, Hitachi, 316-8511, Japan

1 Introduction

We have studied an electron transfer system of a multicomponent dioxygenase, BphA, derived from Acidovorax sp. strain KKS102. BphA4, which is an FAD-containing NADH-dependent ferredoxin reductase, receives two electrons from NADH and delivers one electron each to ferredoxins (BphA3). In the present study, we tried a perfect conversion of co-factor specificity of BphA4 from NADH to NADPH. In order to change its co-factor specificity, target residues for mutation were selected on the basis of the crystal structure of the wild type (WT) BphA4-NAD⁺ complex [1]. This structure showed that Glu175, Thr176, Gln177, Ser182 and Arg183 interacted with a ribose moiety of NAD⁺. Of the five residues, three consecutive residues, Gln175, Thr176 and Gln177, are nearby located to 2'-OH of NAD⁺. Therefore, these residues were selected as targets of mutation, and random mutagenesis was applied for them. As a result, mutant E175C/T176R/Q177G, hereafter CRG, showed high specificity to NADPH. In order to elucidate the molecular mechanism of NADP⁺ binding, mutant CRG was crystallographically analyzed. Here we report a preliminary X-ray crystallographic analysis of the BphA4 CRG mutant.

2 Experiment

A mutant gene of BphA4 was prepared by the PCR mutagenesis method. Mutant CRG was expressed in *Escherichia coli* and was purified as described previously [2]. Crystallization and soaking experiments were performed under anaerobic conditions in order to avoid the oxidation of reduced FAD in BphA4 [3]. The BphA4 CRG mutant was crystallized by the sitting-drop vapour diffusion method. Yellow crystals appeared in 2.0 M sodium formate, 0.1 M sodium acetate pH 5.2. Obtained crystals were soaked in an artificial mother liquor (2.5 M sodium formate, 0.1 M sodium acetate pH 5.2) containing 10 mM NAD(P)H for 2 hours, and then crystals were transferred into a cryoprotectant solution (27.5%(v/v) glycerol, 0.1 M sodium acetate pH 5.2) for 20 seconds. The crystals were then frozen using liquid nitrogen.

3 Results and Discussion

Diffraction data of BphA4 CRG mutant crystals were collected at BL32XU of SPring-8 (Table 1). The diffraction data were processed and scaled using the program XDS and XSCALE, respectively. The crystals belonged to space group $P6_{1}22$, which is the same as that of BphA4 WT crystals. The crystal structures were

determined by the molecular replacement method by MOLREP using the structure of BphA4 WT as a search model. Crystallographic refinement is in progress.

Table 1 Crystallographic summary		
Crystal form	E175C/T176R/	E175C/T176R/
	Q177G	Q177G
Soaking	10 mM NADH,	10 mM NADPH,
condition	2hr	2hr
X-ray source	SPring-8	SPring-8
Beamline	BL32XU	BL32XU
Oscillation angle (°)	0.5	0.5
Exposure time (s)	1	1
Wavelength (Å)	0.97934	0.97934
Temperature (K)	95	95
Space group	P6 ₁ 22	P6122
Unit-cell	a=b=08.2	a=b=08.2
parameters	c=171.3	c=171.0
(Å)	C 171.5	t 171.0
Resolution	50.0-1.70	50.0-1.75
(A)	(1.79-1.70)	(1.84-1.75)
Unique	101.249	93.099
reflections	(14,531)	(12,974)
Completeness	99.6	100.0
(%)	(99.9)	(100.0)
Redundancy	5.6	11.5
	(5.7)	(11.4)
Average <i>I</i> / σ (<i>I</i>)	14.1	22.9
	(3.3)	(4.2)
Rmerge (%)	0.075	0.067
	(0.553)	(0.610)

Values in parentheses are for the outermost resolution shell.

References

[1] M. Senda et al., J. Mol. Biol. 373, 382-400 (2007).

[2] T. Yamada et al., Protein Pept. Letters, 7, 277-280 (2000).

[3] M. Senda et al., Acta Crystallog. Sect F, 63, 311-314 (2007).

*toshiya-senda@aist.go.jp