Performance of PF BL-13A, a Vacuum Ultraviolet and Soft X-ray Undulator Beamline for Studying Organic Thin Films Adsorbed on Surfaces

Akio Toyoshima¹, Takashi Kikuchi¹, Hirokazu Tanaka¹, Kazuhiko Mase^{1,*}, Kenta Amemiya¹, and

Kenichi Ozawa²

¹Photon Factory, Tsukuba 305-0801, Japan

² Tokyo Institute of Technology, Tokyo 152-8551, Japan

1 Introduction

A vacuum ultraviolet and soft X-ray undulator beamline, BL-13A, is mainly dedicated to the study of organic thin films adsorbed on well-defined surfaces, using angle-resolved photoelectron spectroscopy (ARPES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). Details of BL-13A have been described in previous papers [1,2]. In this paper, we report on the present status of the BL-13A and the apparatus for ARPES, XPS, and XAS.

2 Photon-energy resolution and photon intensity

The advantage of the BL-13A is that both high photonenergy resolution and high photon intensity can be achieved simultaneously [1,3]. In the initial stage, the measured photon intensity was one order of magnitude lower than the calculated value [2]. We attributed the reduced photon intensity to the small acceptance angles in the measurements (ca. 0.06 mrad (vertical) × 0.2 mrad (horizontal)) and contamination of the optics. To address this, we increased the acceptance angles to ca. 0.4 mrad (vertical) × 0.27 mrad (horizontal) using a new quadruple mask [4] and we removed the carbon contamination of the optics using oxygen activated by 0th-order synchrotron radiation [5]. To estimate the photon-energy resolution ($E/\Delta E$), we measured the photoionization spectra of rare gasses (He, Ar, and Ne) and nitrogen (N₂)

in four different photon-energy regions at about 64.1 eV (He, Fig. 1), 244.4 eV (Ar, Fig. 2), 401.1 eV (N₂, Fig. 3), and 867.1 eV (Ne, Fig. 4). The measured photon-energy resolutions and photon intensities at the ring current of 450 mA are summarized in Fig. 5.

3 <u>Apparatus for the study of organic thin films on</u> <u>surfaces using ARPES, XPS, and XAS</u>

Figure 6 shows the apparatus used for the study of organic thin films adsorbed on surfaces using ARPES, XPS, and XAS. The apparatus consists of the main ultrahigh vacuum (UHV) chamber equipped with an

electron-energy analyzer (Gamma Data/Scienta, SES200), a sample-preparation UHV chamber, and a UHV chamber for the evaporation of organic materials. The sample can be transferred among UHV chambers with a transfer rod. The sample-holder acceptors in the main and samplepreparation chambers are both equipped with a sample heating and cooling system. To estimate the overall electron-energy resolution, we measured a series of electron spectra in the Fermi region of an evaporated gold film at 5–9 K. The best overall electron-energy resolution was about 12 meV at a photon energy of 30 eV as shown in Fig. 7.

References

K. Mase *et al.*, AIP Conf. Proc. **1234** (2010) 709.
A. Toyoshima *et al.*, J. Vac. Soc. Jpn. **54** (2011) 580.
K. Amemiya and T. Ohta, J. Synchrotron Rad. **11**

(2004) 171.

- [4] H. Tanaka et al., J. Vac. Soc. Jpn. 54 (2011) 481.
- [5] A. Toyoshima et al., J. Synchrotron Rad., in press.

* mase@post.kek.jp

