Alkali-Promoted Pt/TiO, Opens a New Pathway to Formaldehyde Oxidation at Ambient Temperatures

atalytic oxidation of formaldehyde (HCHO) to CO₂ under ambient conditions is of great interest for indoor HCHO purification, Pt/TiO₂ catalysts have low activity and stability for the total oxidation of HCHO at room temperature. Here, we report that the addition of alkali ions significantly promotes the activity of Pt/TiO₂ catalysts for the HCHO oxidation reaction by inducing an atomically dispersed Pt-O(OH)x-alkali species and opening a new lowtemperature reaction pathway. Accordingly, the atomically dispersed Pt-O(OH)x-alkali species could effectively activate H₂O and then catalyze a simple reaction between surface OH and formate species to total oxidation products.

Figure 1 shows the conversion of HCHO to CO₂ as a function of temperature over 1% Pt/TiO₂ and 2% Na-1% Pt/TiO₂ samples at a GHSV of 120,000 h^{-1} and HCHO inlet of 600 ppm. All gas streams were humidified to around RH = 50%. Before each activity test, the samples were reduced in H₂ at 300°C for 30 min. The Na-free catalyst had low activity for the HCHO oxidation reaction, with HCHO conversion being only ca. 19% at 15°C. The addition of alkali ions significantly promoted the activity of Pt/TiO₂, and 100% HCHO conversion to

CO₂ and H₂O was measured over 2% Na-1% Pt/TiO₂ at 15°C. The 2% Na-promoted sample also had excellent stability as confirmed by long isothermal tests. At a GHSV of 300,000 h⁻¹ and with other reaction conditions being the same, approximately 80% HCHO conversion was maintained over a 72 h-long test, as shown in Fig. 1 (inset). Li and K were equally effective promoters as Na and imparted the same high activity and stability to the Pt species.

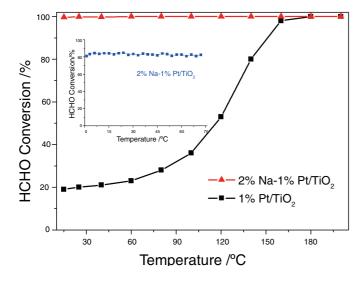


Figure 1: HCHO conversion over 1% Pt/TiO₂ and 2% Na-1% Pt/TiO₂ catalysts as a function of temperature. Reaction conditions: HCHO 600 ppm, O₂ 20 vol.%, RH: ~50%, He balance, total flow rate of 50 cm³ min⁻¹, and GHSV 120,000 h⁻¹ (inset: stability test of 2% Na-1% Pt/TiO₂ at 25°C, GHSV 300,000 h⁻¹ with other reaction conditions being the same).

Table 1: Fitting parameters of the curve-fitted k^3 -weighted EXAFS

0.		0	-	-		
Samples Shell		CN	CN R(Å) (±0.01)		R factor	
Pt-foil	Pt-Pt	12.0±2.3	2.77	0.77±0.010	0.8	
PtO ₂	Pt-O	6.0±1.2	2.02	0.061±0.020	3.0	
	Pt-O-Pt	4.0±1.0	3.14	0.061±0.012	3.0	
1 Pt/TiO2ª	Pt-O	3.7±1.2	2.02	0.061±0.020	0.6	
	Pt-Cl	2.3±1.0	2.30	0.051±0.057	0.0	
2 Na-1Pt ^a	Pt-O	5.4±1.2	2.02	0.061±0.020	8.7	
1 Pt-TiO ₂ ^b	Pt-Pt	5.6±1.2	2.77	0.097±0.010	1.3	
2 Na-1Pt [♭]	Pt-Pt	2.4±0.5	2.77	0.097±0.010	7.2	
1 Pt/TiO ₂ ^c	Pt-Pt	4.7±1.0	2.77	0.097±0.010	0.4	
	Pt-Cl	0.6±0.2	2.30	0.051±0.057	0.4	
2 Na-1Pt ^c	Pt-O	2.8±0.6	2.02	0.092±0.010	9.8	

a: Samples calcined in static air, 400°C, 2 h; b: Samples after in situ H₂ reduction in 10% H₂/Ar at 300°C for 30 min; c: Samples exposed to ambient air after H₂ reduction.

XAFS measurements were conducted to study the structure of samples before/after Na addition and after H₂ reduction under atmospheric pressure. Fitting parameters of the curve-fitted k^3 -weighted EXAFS analysis of 1% Pt/TiO₂ and 2% Na-1% Pt/TiO₂ catalysts are given in Table 1. Prior to H₂ reduction, all Pt was coordinated with O or CI, and the Pt-Pt coordination was zero on all catalysts. After in situ H₂ reduction at 300°C, all Pt species were reduced to the metallic phase, yet the Pt-Pt coordination number was clearly lowered with 2% Na addition. Once the pre-reduced catalysts were exposed to air, as in realistic operation for HCHO oxidation, surface structures were changed due to oxygen adsorption [1]. The Na-free Pt/TiO₂ sample showed a Pt-Pt coordination shell as in Pt metal and a small residual Pt-CI coordination shell. With 2% Na added, only a Pt-O shell was detected, indicating that 2% Na addition can completely suppress the formation of Pt-Pt bonds in the presence of O₂ and induce atomically dispersed Pt-O species on the TiO₂ surface.

The atomically dispersed Pt-O(OH)x-Na species induced by Na addition could easily activate H₂O and then open a new pathway for HCHO oxidation under

2	analysis	of	1%	Pt/TiO.	and	2%	Na-1	%	Pt/TiO	catal	ete
2	anaryoid		1 /0	1 4 1102	anu	2 /0	INC I	/0	T UTIO	Gaiai	yolo

ambient conditions. The HCHO oxidation reaction on Na-free samples follows the formate (HCOO⁻) decomposition route (HCHO \rightarrow HCOO⁻ \rightarrow CO \rightarrow CO₂), with formate decomposing into CO being the rate determining step [2]. In contrast, the HCHO oxidation over the Na-promoted Pt/TiO₂ catalyst follows a simple pathway with reaction between surface OH and formate species to total oxidation products (HCHO \rightarrow HCOO + $OH \rightarrow H_2O + CO_2$), thus greatly enhancing the HCHO oxidation activity.

REFERENCES

- [1] C. Zhang, F. Liu, Y. Zhai, H. Ariga, N. Yi, Y. Liu, K. Asakura, M. F.-Stephanopoulos and H. He, Angew. Chem. Int. Ed. 51, 9628 (2012)
- [2] C. Zhang, H. He and K. Tanaka, Appl. Catal. B 65, 37 (2006).

BEAMLINES BL-12C and BL-7C

C. Zhang¹, F. Liu¹, Y. Zhai², H. Ariga³, N. Yi², Y. Liu¹, K. Asakura³, M. F.-Stephanopoulos² and H. He¹ (¹CAS-RCEES, ²Tufts Univ., ³Hokkaido Univ.)