Rotation Mechanism of V₁-ATPase

acuolar ATPases (V-ATPases) function as ATP-driven ion pumps, which are located on membranes of various living organisms. Human V-ATPase is a promising drug target for osteoporosis and cancer metastasis. V1-ATPase (the hydrophilic part of V-ATPase) is a rotary motor, in which a central stalk DF complex rotates inside a catalytic A_3B_3 complex with the ATP hydrolysis. We have solved the A_3B_3 complex and the V₁-ATPase from the bacterium Enterococcus hirae, and have proposed a model of the rotation mechanism based on their asymmetric structures.

The ion-translocating rotary ATPases (V-ATPases and F-ATPases) have evolved from a common ancestral enzyme. F-ATPases in mitochondria, chloroplasts and oxidative bacteria function as ATP synthase (ATP is the major energy currency of life) and V-ATPases in acidic organelles and plasma membranes of eukaryotic cells function as H⁺ pumps. These ATPases have similar overall structures that consist of a hydrophilic portion (F_1 and V_1) and a membrane-embedded iontransporting portion (F_0 and V_0), and they have a similar reaction mechanism that occurs through rotation. *E. hirae* V-ATPase transports Na⁺ or Li⁺, instead of H⁺. This is composed of nine subunits that are homologous to the corresponding subunits of eukaryotic enzymes. The catalytic part of the V₁ consists of a hexameric arrangement of alternating A- and B-subunits (A₃B₃), and V₁-ATPase is composed of A₃B₃ and central stalk DF complex.

We determined the crystal structures of the nucleotide-free A₃B₃ (eA₃B₃) and AMPPNP-bound A₃B₃ (bA₃B₃) at first by using BL41XU, SPring-8 [1]. Both of the A₃B₃ hexamers assembled asymmetrically, but different combinations of conformation were contained. In eA₃B₃, one of the three A adopts a closed conformation (A_c) , which shifts the structure into the center of the A₃B₃, whereas the other two A adopt similar open conformations (A_{Ω} and A_{Ω}), Similarly, one of the three B shows a closed conformation (B_c) compared to the others (B_o and B_{α}) (Fig. 1a-d). The conserved nucleotide-binding sites were located between the three different combinations: A_0B_c , A_0B_0 and A_cB_0 pairs. In bA_3B_3 , AMPPNP molecules were bound at two A_cB_o each, and not at the other A_oB_c (Fig. 1 e-h).

Figure 2 : Rotation model of V₁-ATPase. Top view of the C-terminal domain viewed as in Fig. 1 d, h and I. ATP with yellow "P" in a and d represents an ATP molecule that is committed to hydrolysis. The blue "P" in b represents a phosphate molecule after ATP hydrolysis. a, The AMPPNP-bound V₁: Two ATPs are bound in the "Bound" and "Tight" forms at first. The reaction is triggered by the ATP hydrolysis in the "Tight" form. b, The nucleotide-free A₃B₃: By the conversion to ADP and phosphate, the conformation of the A₃B₃ part in V₁-ATPase may return to eA₃B₃ (ground structure of A₃B₃ complex) in a cooperative manner. The "Tight" form changes to the "Empty" form with the release of ADP and phosphate and the "Empty" form changes to the "Bindable" form. c, The AMPPNP-bound A₃B₃: By new ATP binding to the "Bindable" form, the conformation changes to bA₃B₃, which has two "Bound" forms with two ATP, and then the DF rotates. d, The "Bound" form from the beginning changes to the next "Tight" form, induced by DF binding and the V₁-ATPase returns to the initial state with 120° rotation.

Compared with conformations of these pairs, we designated A_0B_c and $A_cB_{0'}$ as the "Empty" and "Bound" form, respectively. The A_0B_0 in eA_3B_3 seemed to change to A_cB_o by binding with the AMPPNP molecule. We designated this unique A_0B_0 of eA_3B_3 as the "Bindable" form. These asymmetries suggest that the formation of A₃B₃ imposes a restriction on the AB to induce conformational changes that cooperatively generate one "Empty" (ATP-unbound form), one "Bindable" (ATPaccessible form) and one "Bound" (ATP-bound form) conformation, which in turn determines the order of nucleotide binding.

Next, we determined the crystal structures of the V₁-ATPase (A₃B₃DF) by using BL-1A, AR-NE3A and AR-NW12A. The asymmetry of A₃B₃DF was increased. By the interaction with the DF complex, the "Bindable" form (A_0, B_0) of eA_3B_3 changes to the "Bound" form $(A_{c}B_{c})$ of V₁ and the "Bound" form $(A_{c}B_{c})$ of $eA_{3}B_{3}$ changes to the new "Tight" form $(A_{CB}B_{CB})$ of V₁. The new "Tight" form is composed of closer conformations of A and B (A_{CB} and B_{CB} , respectively). In the "Tight" form, the position of conserved Arg350 on B_{CR} , which helps ATP hydrolysis, seemed to approach the nucleotide binding site. The ATP hydrolysis is stimulated by this approach triggered by the movement of Arg350, which is induced by binding between the DF complex and A_3B_3

Based on these asymmetric structures, a rotation model of V₁-ATPase was proposed. In AMPPNPbound V_1 (Fig. 2 **a**), two ATP molecules are bound in the "Bound" and "Tight" form at first. The "Tight" form with the ATP molecule is presumed to be the hydroly-

sis awaiting state, therefore the ATP hydrolysis in the "Tight" form initiates the rotary reaction. By the conversion to ADP and phosphate, the conformation of the A_3B_3 part in V₁-ATPase may return to eA_3B_3 (ground structure of A₃B₃) in a cooperative manner. The "Tight" form changes to the "Empty" form with the release of ADP and phosphate and the "Empty" form changes to the "Bindable" form. However, the interaction between the DF and "Tight" form might prevent these structural changes, and an intermediate state may exist instead of the state of Fig. 2 b. After that, the new ATP molecule approaches and binds to the "Bindable" form, and the conformation changes to the "Bound" form; as a result, the A₃B₃ portion has two "Bound" forms with two ATP molecules and one "Empty" form, the structure of which corresponds to bA₃B₃, and then the DF rotates (Fig. 2 c). At last, the "Bound" form from the beginning changes to the next "Tight" form, induced by DF binding (Fig. 2 d) and the V₁-ATPase returns to the initial state (Fig. 2 a).

REFERENCE

[1] S. Arai, S. Saijo, K. Suzuki, K. Mizutani, Y. Kakinuma, Y. I.-Katsura, N. Ohsawa, T. Terada, M. Shirouzu, S. Yokoyama, S. Iwata, I. Yamato and T. Murata, Nature 493, 703 (2013).

BEAMLINES BL-1A, AR-NE3A and AR-NW12A

S. Saijo¹, I. Yamato² and T. Murata^{3,4} (¹KEK-PF, ²Tokyo Univ. of Science, ³Chiba Univ., ⁴JST-PRESTO)