Highlights

1. Atomic and Molecular Science	12
1-1 Single-Photon $K^{-1}K^{-1}$ Double Core Ionization of C_2H_{2n} (n=1-3) Sequence Molecules as a	
Potential New Tool for Chemical Analysis	
2 Materials Science	1/
2. 1 Electronic Entroplectricity with Large Polarization Directed Antiperallel to Melecular Directorement	. 14
in an Organic Crystal	
2-2 Experimental Realization of a Topological Crystalline Insulator in SnTe	
2-3 Ordered and Foam Structures of Semifluorinated Block Copolymers in Supercritical Carbon Dioxide 2-4 Self-Energy and the Electronic Structure of Correlated Metal SrVO ₃	
2-5 Anisotropic Thermal Expansion and Cooperative Invar/Anti-Invar Effects in MnNi Alloy	
2-6 Structural Study of a Purely Organic Single-Component Metal with Symmetric Hydrogen Bond	
2-7 X-Ray Photo-Induced Phase Transition Enabled by Impurity Doping in Layered Manganite	
2-8 Three-Way Switching in a Multifaceted [CoFe] Chain	
· · · · · · · · · · · · · · · · · ·	
3 Chemical Science	30
3. Chemical Science	30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 	30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Bh Dopants in SrTiQ. Water-Splitting Photocathodes 	30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Buthenium (II)-tris-2 2'-biovridine 	30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Bu K-Edge X-Bay Absorption Fine Structure 	30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 	. 30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 3-5 High Entropy State Pt-Bu Anode Catalyst with Completely Bandom Distribution 	. 30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 3-5 High Entropy State Pt-Ru Anode Catalyst with Completely Random Distribution 3-6 Alkali-Promoted Pt/TiO. Opens a New Pathway to Formaldebyde Oxidation at Ambient Temperatures 	30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 3-5 High Entropy State Pt-Ru Anode Catalyst with Completely Random Distribution 3-6 Alkali-Promoted Pt/TiO₂ Opens a New Pathway to Formaldehyde Oxidation at Ambient Temperatures 3-7 Chlorination of Carbon during Thermochemical Behavior of Lead by Using X-Bay Absorption 	. 30
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 3-5 High Entropy State Pt-Ru Anode Catalyst with Completely Random Distribution 3-6 Alkali-Promoted Pt/TiO₂ Opens a New Pathway to Formaldehyde Oxidation at Ambient Temperatures 3-7 Chlorination of Carbon during Thermochemical Behavior of Lead by Using X-Ray Absorption 	3 0
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 3-5 High Entropy State Pt-Ru Anode Catalyst with Completely Random Distribution 3-6 Alkali-Promoted Pt/TiO₂ Opens a New Pathway to Formaldehyde Oxidation at Ambient Temperatures 3-7 Chlorination of Carbon during Thermochemical Behavior of Lead by Using X-Ray Absorption Spectroscopy 3-8 Formation of a Stable Monomeric Zn⁰ and Zn⁺ Species in MEI-Type Zeolite: 	3 0
 3. Chemical Science 3-1 Real-Time Observation of Molecular Orientation during the Adsorption Process by Means of Wavelength-Dispersive X-Ray Absorption Spectroscopy with Polarization Switching 3-2 Valence Control of Rh Dopants in SrTiO₃ Water-Splitting Photocathodes 3-3 Structural and Electronic Properties of the Triplet State of Ruthenium (II)-<i>tris</i>-2,2'-bipyridine Observed by Picosecond Time-Resolved Ru <i>K</i>-Edge X-Ray Absorption Fine Structure 3-4 Formation of a Kagome Lattice with Huge Channels by Very Large Spherical Anions 3-5 High Entropy State Pt-Ru Anode Catalyst with Completely Random Distribution 3-6 Alkali-Promoted Pt/TiO₂ Opens a New Pathway to Formaldehyde Oxidation at Ambient Temperatures 3-7 Chlorination of Carbon during Thermochemical Behavior of Lead by Using X-Ray Absorption Spectroscopy 3-8 Formation of a Stable Monomeric Zn⁰ and Zn⁺ Species in MFI-Type Zeolite: Insight from <i>in-situ</i> XAES Spectroscopy and DET Calculation 	3 0

4. Earth Science	46
4-1 Superplasticity in Hydrous Melt-Bearing Dunite and its Implications for Shear Localization in the Earth's Lipper Mantle	
5. Life Science	48
5-1 Crystal Structure of Human Tyrosylprotein Sulfotransferase:	
Insights into Substrate-Binding and Catalysis of Post-Translational Protein Tyrosine Sulfation	
5-2 Long-Awaited Structural Information of the Helicobacter pylori CagA Oncoprotein	
5-3 Trapping a Whole Protein in a Well-Defined Molecular Capsule	
5-4 Rotation Mechanism of V1-ATPase	
5-5 Mechanistic Insights into the Activation of Rad51-Mediated Strand Exchange from the Structure	
of a Recombination Activator: the Swi5-Sfr1 Complex	
5-6 Fungal Antifreeze Protein Consists of a Unique β -Solenoid Structure	
5-7 A Structural Study of IFIT2/ISG54 Suggests its Functional Mechanism on its Anti-Viral Activity and Cellular Functions	
5-8 Cooperative Protein Structural Dynamics of Homodimeric Hemoglobin	
6. Imaging and Optics	64
6-1 X-Ray Waveguiding in Resonance with a Periodic Structure	
6-2 Effect of an Ultraflat Substrate on the Epitaxial Growth of Chemical-Vapor-Deposited Diamond	
7. Instrumentation and Methodology	68
7-1 In situ Removal of Carbon Contamination from the Whole Optics in a Vacuum Ultraviolet and	
Soft X-Ray Undulator Beamline Using Oxygen Activated by Non-Monochromatized	
Synchrotron Radiation	