9A/2011G594 and NW10A/2011G184

XAFS Study on Various Metal Catalysts for Hydrogen Evolution and CO₂ Reduction Reactions Incorporated with Organic Molecular Layer on Si(111) Surface

Takuya Masuda,^{1,2} Hiromitsu Uehara,³ Satoru Takakusagi,³ Wang-Jae Chun,⁴ Toshihiro Kondo,⁵ Kiyotaka Asakura³ and Kohei Uosaki,^{1,6,7,*}

¹Global Research Center for Environment and Energy based on Nanomaterials Science (GREEN), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

²Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan

³Catalysis Research Center, Hokkaido University, Sapporo 001-0021, Japan

⁴Chemistry Department, International Christian University, Mitaka 181-8585, Tokyo, Japan

⁵Graduate School of Humanities and Sciences, Ochanomizu University, Ohtsuka, Bunkyo-ku, Tokyo 112-8610, Japan

⁶International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan

⁷Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-0810,

Japan

1 Introduction

Multielectron transfer reactions at semiconductors are generally slow and a catalyst is required to efficiently promote these reactions. Many groups have examined the modification of the semiconductor surface by catalytic metals. It was, however, found that direct contact of a metal leads to the formation of a Schottky junction and recombination center, resulting in a reduced efficiency.

Recently, we have demonstrated that very efficient photoelectrochemical hydrogen evolution reaction (HER) can be achieved at a Si(111) electrode modified with a highly ordered organic molecule layer containing viologen moieties as electron mediators and Pt complexes as the "confined molecular catalysts".^{[1],[2]} Subsequently, we have attempted to apply this concept for the CO₂ reduction. Not only $PtCl_4^2$, but also $AuCl_4$ and $PdCl_4^2$ were chosen as metal catalysts because Pd and Au metal electrodes are efficient electrocatalysts for CO₂ reduction. In the present study, we determined oxidation state and local structure of those metal catalysts before and after the electrochemical HER and CO₂ reduction reaction by polarization-dependent total reflection fluorescence (PTRF)-XAFS measurements.

2 Experiment

Si(111) electrode was modified with five layers of viologen moiety with $PtCl_4^{2-}$, $AuCl_4^{-}$ and $PdCl_4^{2-}$ to yield a $(Pt-V^{2+})_5$ -Si(111), $(Au-V^{2+})_5$ -Si(111) and $(Pd-V^{2+})_5$ -Si(111), respectively, as previously reported.^{[1],[2],[3]}

Pt L₃, Au L₃ and Pd K edge XAFS measurements were performed at BL9A of the Photon Factory (PF) and NW 10A of the Photon Factory-Advanced Ring (PF-AR). Xrays were monochromated using a Si(111) double-crystal monochromator for the Pt L₃ and Au L₃ edges at the BL9A and Si(311) double-crystal monochromator for the Pd K edge at the NW10A. The fluorescence signals were detected using a 19-element pure Ge solidstate detector (GL0110S; Canberra, USA). The EXAFS analyses were carried out using REX 2000 (Rigaku, Japan).

3 <u>Results and Discussion</u>

At the $(Pt-V^{2^+})_5$ -Si(111) electrode just after metal incorporation, the shapes of white line and EXAFS oscillation are almost the same as those of K₂PtCl₄, showing the insertion of PtCl₄²⁻ into the molecular layers. After the electrochemical HER and CO₂ reduction, the period of EXAFS oscillation was changed and ligand exchange of CI to oxygen species was found by curve fitting of the Fourier transform. In addition, no Pt-Pt bond was detected, showing that metallic particles were not formed and the actual catalyst for HER and CO₂ reduction is the "confined Pt complex" within the molecular layer.

At the $(Au-V^{2+})_{s}$ -Si(111) electrode just after metal incorporation, XANES and EXAFS oscillation were similar to those of Au foil, rather than those of NaAuCl₄, showing that the Au complexes were reduced to Au metallic particles during metal incorporation, indicating that the actual catalyst for HER and CO₂ reduction is Au metallic particle.

The XANES spectrum of the $(Pd-V^{2+})_5$ -Si(111) electrode just after metal incorporation was distinct from both those of K_2PdCl_4 and Pd foil but the EXAFS oscillation was almost identical to that of K_2PdCl_4 pellet, suggesting that the insertion of $PdCl_4^{2-}$ into the molecular layers as was the case of $PtCl_4^{2-}$. After the electrochemical HER and CO₂ reduction, the period of EXAFS oscillation was changed by the formation of Pd-Pd bond, showing that the Pd complexes incorporated within the molecular layer were gradually reduced to Pd metallic particle during HER and CO₂ reduction. Thus, both Pd complex and Pd metallic particle can be the actual catalysts for HER and CO₃ reduction reaction.

References

[1] T. Masuda, K. Shimazu, K. Uosaki, Journal of Physical Chemistry C, **112** (2008) 10923-10930.

- [2] T. Masuda, H. Fukumitsu, S. Takakusagi, W.-J. Chun, T. Kondo, K. Asakura and K. Uosaki, Advanced Materials, 24 (2012) 268-272.
- [3] Y. Sun, T. Masuda, K. Uosaki, Chemistry Letters 41, (2012) 328-330.
- * masuda.takuya@nims.go.jp/uosaki.kohei@nims.go.jp