Ikuo Nakai^{1,*}, Takahiro Ishii¹, Toshimasa Inoue¹, Masaaki Chikaraishi¹, Yuuji Yamao¹

and Makio Kurisu²

¹Department of Electrical and Electronic Engineering, Tottori University, Tottori 680-8552, Japan ²Department of Physics, Ehime University, Matsuyama 790-8577, Japan

1 Introduction

Transition-metal doped oxides are promising candidates for a room temperature ferromagnetic semiconductor which is a key material to spintronics devices [1]. Several models have been proposed for ferromagnetism of the oxides in which defects, especially oxygen vacancies, play a role [2]. However, there is few direct observation for the oxygen vacancies. This report concentrates on observing the oxygen vacancies directly by EXAFS.

2 Experiment

We selected a rutile-type TiO_2 (99.99%) as a matrix and a normal spinel-type Co_3O_4 (99.9%) as a dopant. They mixed in the ratio of 3 at% Co and were ground for several hours using a ball mill. The mixture was calcined at 800 °C for 5 hours in air. Hereafter we refer to the specimen thus obtained as $(Ti_{0.97}Co_{0.03})O_2$.

EXAFS, X-ray diffraction and magnetic measurements were carried out for the specimen with references TiO_2 and Co_3O_4 at 300 K.

3 Results and Discussion

We have confirmed by conventional x-ray diffraction and SPring-8 synchrotron powder x-ray diffraction measurements that $(Ti_{0.97}Co_{0.03})O_2$ is a single phase with a rutile-type structure as same as that of the TiO₂ matrix. Magnetization measurements shows that $(Ti_{0.97}Co_{0.03})O_2$ has a coercive force of 0.02 T characteristic of ferromagnetism at 300 K while TiO₂ is paramagnetic.

Figure 1 shows the absolute values of radial structure functions of (Ti_{0.97}Co_{0.03})O₂ near both Co and Ti K edges and TiO₂ near Ti K edge without a difference of the phase shift. From the EXAFS fit a central Ti atom in the rutiletype TiO_2 has six oxygen neighbors at 1.96 Å, two Ti atoms at 2.96 Å and eight Ti next neighbours at 3.56 Å, which are completely the same interatomic distances as those of x-ray diffraction. The radial structure function of $(Ti_{0.97}Co_{0.03})O_2$ at the Co K edge shows the three peaks corresponding to the first Co-O, the first Co-Ti and the second Co-Ti pairs as indicated by the arrow. The features of (Ti_{0.97}Co_{0.03})O₂ near both Co and Ti K edges are as same as those of TiO₂ at the Ti K edge. This implies that Co atoms in (Ti_{0.97}Co_{0.03})O₂ are located on the Ti sites of TiO₂. It should be noted that (Ti_{0.97}Co_{0.03})O₂ forms no Co clusters because there is not any peaks around 2.0 Å. In (Ti_{0.97}Co_{0.03})O₂ the interatomic distances of Co-O and Co-Ti pairs are a little different from those of the Ti-O and Ti-Ti counterparts.

Another striking feature of $(Ti_{0.97}Co_{0.03})O_2$ is about the oxygen around the Co site. The Co-O peak of $(Ti_{0.97}Co_{0.03})O_2$ is much lower than the Ti-O peaks of $(Ti_{0.97}Co_{0.03})O_2$ and TiO₂. This means that the coordination number of oxygen around Co in $(Ti_{0.97}Co_{0.03})O_2$ is less than six. We have obtained the coordination number of oxygen around the Ti atom to be six and that the Ti⁴⁺ sites are substituted by Co3⁺ or Co²⁺ ions. Therefore we conclude that there are oxygen vacancies only around Co atoms in $(Ti_{0.97}Co_{0.03})O_2$ due to the electroneutrality [3].

Fig. 1: Radial structure function of $(Ti_{0.97}Co_{0.03})O_2$ with references Co_3O_4 and $CoTiO_3$ for the Co K edge at 300 K.

Acknowledgement

The synchrotron powder x-ray diffraction experiment was carried out at SPring-8 BL02B2 with approval of the Japan Synchrotron Radiation Research Institute (No. 2011A1354).

<u>References</u>

- [1] Y. Matsumoto et al., Science 291, 854 (2001).
- [2] J. M. D. Coey et al., Nature Mater. 5, 173 (2005).
- [3] I. Nakai *el al.*, *J. Korean Phys. Soc.* to be published (2013).
- * nakai@ele.tottori-u.ac.jp