BL-3A/2011G062

Magnetic structures of layered perovskite SrIrO₃/SrTiO₃ superlattice thin films studied by resonant x-ray diffraction

S. Yamamura^{1*}, H. Wadati¹, K. Ishii²,

Y. Yamasaki³, H. Nakao³, Y. Murakami³, J. Matsuno⁴, and H. Takaqi⁵

¹Department of Applied Physics, Graduate School of Engineering, University of Tokyo,

2-11-16 Takeda Frontier Science Hall Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan

²SPring-8, Japan Atomic Energy Agency (JAEA), Hyogo 679-5148, Japan

³High Energy Accelerator Research Organization (KEK) Photon Factory,

1-1 Oho, Tsukuba, Ibaraki 305-001, Japan

⁴RIKEN CEMS, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan ⁵Depertment of Physics, Graduate School of Science, University of Tokyo,

7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

unlts)

1 Introduction

Ir oxides (5d-electron systems), by strong spin-orbit interaction, are expected to have metal-insulator transition which is different from the 3d electron system. In bulk samples of $Sr_{m+1}Ir_mO_{3m+1}$, it changes from Mott insulators to semimetals as m increases [1].

(SrIrO₃)_m/SrTiO₃ superlatice (SL) thin films are composed of a band insulator SrTiO₃ (STO) and a semimetal SrIrO₃ (SIO). One can control the electronic and magnetic structures by changing the value of m. The resonant x-ray diffraction (RXD) technique uses resonant effect at the x-ray absorption edge (at the L_2 - and L_3 -edges) to selectively enhance the signal of interest, and has become a powerful tool for investigating ordering phenomena. In the present work, we have obtained the information about the magnetic structure in SIO/STO SL thin films.

2 Experiment

Thin films of SIO/STO SL were fabricated by the pulsed laser deposition (PLD) method. The resonant x-ray diffraction measurements were performed at BL-3A of KEK-PF. RXD Measurements were performed between 10 K and 300 K. We used Ir L₂and L_3 -edge (12.845 keV and 11.228 keV, respectively). We also performed x-ray absorption spectroscopy (XAS) measurements at both edges. XAS spectra were measured by fluorescence mode.

3 Results & Discussion

Figure 1 (a) shows $(SIO)_1/(STO)_1$ superlattice thin film at resonant x-ray diffraction peaks at the L_3 edge at Q = $(1/2 \ 1/2 \ 5)$. The peak of Q = $(1/2 \ 1/2 \ 5)$ is of magnetic origin and disappears at $T_N = 130$ K. This result is in good agreement with magnetization measurements.

Figure 1 (b) and (c) show the Ir $L_{3,2}$ -edge RXD and XAS spectra for (SIO)₁/(STO)₁ SL. We obtained the

RXD enhancement only at the L_3 -edge as shown in Fig. 1(b) and (c).

From these results, we conclude that the magnetic structure is similar to that of Sr_2IrO_4 [2] and that (SrIrO₃)₁/(SrTiO₃)₁ superlattice thin film has in-plane magnetization due to spin canting.

Acknowledgment

This research is supported by the "Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST Program).

References

- [1] S. J. Moon et al., PRL 101, 226402 (2008). [2] B. J. Kim et al., Science 323, 1329 (2009).
- ' yamamura@ce.t.u-tokyo.ac.jp