BL-11A/2012S2-5

$Na_{1-x}Ca_xCr_2O_4 \mathcal{O} O Is$, Cr 2p XAS による電子状態研究 O Is and Cr 2p XAS study of electronic structures of $Na_{1-x}Ca_xCr_2O_4$

岡本淳^{1,*},高橋由香利¹,須田山貴亮¹,山崎裕一¹,中尾裕則^{1,2},櫻井裕也³, Ting-Hui Kao^{3,4}, Hung-Duen Yang⁴,村上洋一¹

1構造物性研究センター,放射光科学研究施設,〒305-0801つくば市大穂 1-1

²CREST, 科学技術振興機構(JST), 〒102-0076 千代田区五番町 7

3物質・材料研究機構,〒305-0044 つくば市並木 1-1

⁴ 國立中山大學, 〒80424 台湾高雄市鼓山區蓮海路 70 號

J. Okamoto¹, Y. Takahashi¹, T. Sudayama¹, Y. Yamasaki¹, H. Nakao^{1,2}, H. Sakurai³, T.-H. Kao^{3,4},

H.-D. Yang⁴, and Y. Kurakami¹

- ¹CMRC, Photon Factory, 1-1 Oho, Tsukuba, 305-0801, Japan
- ²CREST, Japan Science and Technology Agency (JST), Chiyoda-ku, Tokyo, 102-0076, Japan

³National Institute for Materials Science, Namiki 1-1, Tsukuba, Ibaraki 305-0044, Japan

⁴National Sun Yat-sen University,70 Lienhai Rd., Kaohsiung, 80424, Taiwan, R. O. C.

1 <u>はじめに</u>

カルシウムフェライト型構造 Cr 酸化物 Na₁₋ _xCa_xCr₂O₄ は、Na エンドの傾角反強磁性状態で負の 磁気抵抗を示すことで着目されている[1]。NaCr₂O₄ は混合原子価をとり、Cr³⁺と Cr⁴⁺が 1:1 で構成され ている[2]。負の磁気抵抗効果は Ca 置換で急激に抑 制されることから、Cr⁴⁺の電子状態が負の磁気抵抗 効果の原因であると予想され、その Cr 3d バンドや O 2p バンドの電子構造の解明が必要とされている。

2 実験

多結晶試料 Na_{1-x}Ca_xCr₂O₄(x = 0, 1/4, 1/2, 3/4, 1)と参 照試料 Cr₂O₃、CrO₂のO *Is* XAS および Cr 2p XAS 測 定を Photon Factory, BL-11A にて行った。エネルギ 一分解能は出射スリットの故障で、~1 eV である。 真空チェンバーに入れる際に、やすり掛けで試料の 表面処理を行った。XAS の測定は全電子収量法 (TEY)と蛍光収量法(FY)で、室温と 28 K で行った。

図1: Na_{1-x}Ca_xCr₂O₄と参照試料のCr 2p XAS

3 結果および考察

Na_{1-x}Ca_xCr₂O₄と参照試料の Cr 2p XAS を図1に示 す。Caドープが減るにつれ、Cr L₃ XAS ピークが単 調に Cr₂O₃の低エネルギー位置から CrO₂の高エネル ギー位置にシフトしている。このことから Cr の価 数が3価から3.5価へ変化していることが見て取れ る。同様に Na_{1-x}Ca_xCr₂O₄と参照試料の O Is XAS を

図2: Na_{1-x}Ca_xCr₂O₄と参照試料のO Is XAS

図 2 に示す。Ca ドープ量が減るにつれ、O 2p 非占 有状態と混成している Cr 3d 非占有状態が Cr₂O₃の 鋭い構造から CrO₂の広い構造へ近づいていること が分かる。これは、Cr の価数が増大するにつれ、O 2p 軌道のホール密度が増大していることに対応する。

参考文献

- [1] H. Sakurai et al., Angew. Chem. Int. Ed. 51, 6653 (2012).
- * jun.okamoto@kek.jp