BL-9C/2012G651

XAFS analysis of Lithium-ion battery materials with tunnel-type structure

Kunimitsu Kataoka^{1,*},Mikito Mamiya¹, Norihito Kijima¹, Junji Akimoto¹ Advaced Industrial Science and Technology (AIST), Tsukuba, 305-8565, Japan

Introduction

Lithium manganese oxide Li_{0.44}MnO₂ has been extensively investigate as one of the positive electrode materials for secondary lithium batteries [1]. This compound can be prepared by a ion-exchange method using the corresponding sodium manganese oxide $Na_{0.44}MnO_2$ as the parent compound. The electrochemical measurements for Li_{0.44}MnO₂ showed an initial discharge capacity of 166 mAh/g between 4.8 and 2.5 V. In addition, the specific capacity and discharge profile were improved by an additional lithium insertion treatment in molten LiNO₃-LiOH salt at low temperature $(Li_{0.55}MnO_2)$ [2]. Reentry, we have successfully prepared the Li_{0.81}MnO₂ sample having the original Na_{0.44}MnO₂type framework structure by LiI treatment of the asprepared Li_{0.59}MnO₂ sample. The electrochemical measurements for Li_{0.81}MnO₂ showed an initial discharge capacity of 200 mAh/g between 4.8 and 2.5 V.

To clarify the Li-ion insertion materials of $Li_{0.44}MnO_2$, X-ray absorption fine structure (XAFS) studis have been made.

Experimental

The Li_{0.44}MnO₂ sample was prepared from Na_{0.44}MnO₂ via Na⁺/Li⁺ ion-exchange reaction using LiNO₃ as molten salt at 270°C for 10 h in air. Additional lithium in-serted Li_{0.59}MnO₂ sample was next prepared by heating as-prepared Li_{0.44}MnO₂ sample in molten LiNO₃-LiOH at 270°C for 10 h in air. The Li_{0.82}MnO₂ samples were synthesized by reacting 10mol% excess of LiI (99.9% pure) with the as-prepared Li_{0.59}MnO₂ sample in acetonitrile at 80°C for 5 h and 10 h, respectively. After LiI treatment, the samples were washed with acetonitrile, and then dried at 120°C for 12 h in a vacuum.

Mn K-edge XAFS of samples were measured by transmission mode using synchrotron radiation at beam line BL-9C of Photon Factory. The Athena software was used for the analysis of XAFS data.

Result and Discussion

The crystal structure of Li_xMnO_2 (x = 0.44 and 0.82) maintains the parent Na_{0.44}MnO₂-type tunnel framework as show in Figure 1. The Li-ion of Li_xMnO_2 filled in the tunnel space. About $\text{Li}_{0.44}\text{MnO}_2$, we have confirmed that it exists in the tunnel space in the previous report [1]. About $\text{Li}_{0.81}\text{MnO}_2$, chemical composition was confirmed by chemical analysis. The electrochemical measurement result changed surely. However, we were not able to confirm whether excessive lithium was inserted in tunnel space. Because observation of Li-ions is because difficult by powder X-ray diffraction.

Figure 2 demonstrates Mn K-edge X-ray absorption near-edge structure (XANES) spectra of the manganese oxides, $Li_{0.44}MnO_2$ and $Li_{0.81}MnO_2$. Evidence of reduction to lower valent Mn-ions after Li-ion insertion was detected by these XANES spectra. So valence of Mn at $Li_{0.81}MnO_2$ is below $Li_{0.44}MnO_2$. It was confirmed that excess lithium ions are inserted in the tunnel sapce from this result.

Figure 1. Crystal structure of the Na_{0.44}MnO₂-type tunnel framework.

Figure 2. Mn K-edge XANES spectra of the manganese oxides and $Na_{0.44}MnO_2$ -type Li_xMnO_2 (x=0.44 and 0.80).

References

[1] J. Akimoto et al., Electrochem. Solid-State Lett., 8, A554 (2005).

[2] J. Awaka et al., J. Power Sources, 174, 1218 (2007).

kataoka-kunimitsu@aist.go.jp