Electronic structure of Zn-substituted BaFe$_2$As$_2$ revealed by angle-resolved photoemission spectroscopy

Shin-ichiro IDETA$^{1, 4}$, Teppei YOQSHIDA$^{2, 3}$, Masamichi NAKAJIMA$^{3, 4}$, Walid Malaeb5, Takahiro Shimojima1, Kyoko Ishizaka1, Atushi FUJIMORI2,3, Hiroshi Kumigashira5, Kanta ONO6, Kunihiro KIHOU$^{3, 4}$, Yasuhide TOMIOKA$^{3, 4}$, C. H. LEE$^{3, 4}$, Akira IYO$^{3, 4}$, Hiroshi EISAKI$^{3, 4}$, Toshimitsu ITO$^{3, 4}$, Shin-ichi UCHIDA$^{2, 3}$

1Department of Applied Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-8656, Japan
2Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo, 113-0033, Japan
3JST, Transformative Research-Project on Iron Pnictides (TRIP), Chiyoda, Tokyo, 102-0075, Japan
4National Institute of Advanced Industrial Science and Technology, Tsukuba, 305-8568, Japan
5Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba, 277-8581, Japan
6Photon Factory, KEK, Tsukuba, Ibaraki, 305-0801, Japan

1 Introduction

The role of substituted transition-metal atoms in the electronic structure has been one of the most important but difficult issues in the iron-based superconductors (Fe-SCs). Based on supercell calculations within the density functional theory (DFT), Wadati et al. have studied the spatial distribution of extra electrons in Co-, Ni-, Cu-, and Zn-substituted BaFe$_2$As$_2$ and found that the extra electrons are located at the Co, Ni, Cu, and Zn sites [1]. Our recent angle-resolved photoemission spectroscopy (ARPES) measurement has revealed that deviation from the rigid-band model gradually develops in going from Co-, Ni-, to Cu-substituted BaFe$_2$As$_2$ [2]. For Zn substitution, according to the rigid-band model, the doped electron number is expected to be four times as large as that of Co doping, and at the same time the impurity potential is expected to be stronger than Co, Ni, and Cu. Here, we report the electronic structure of Zn-doped BaFe$_2$As$_2$ revealed by ARPES [3].

2 Experiment

High-quality single crystals of Ba(Fe$_{1-x}$Zn$_x$)$_2$As$_2$ with $x = 0.08$ and 0.25 were grown by the self-flux method. The Zn concentration was determined by energy dispersive X-ray (EDX) analysis. ARPES measurements were carried out at beamline 28A of Photon Factory using linearly polarized light ranging from $h\nu = 34$–80 eV. A Scienta SES-2002 analyzer was used with the total energy resolution of 15–20 meV. The crystals were cleaved in situ at $T = 20$ K in an ultrahigh vacuum of $\sim 5 \times 10^{-11}$ Torr.

3 Results and Discussion

In order to estimate the FS volumes quantitatively, Fermi surface (FS) mapping in the k_x-k_y plane was performed by changing the photon energy as shown in Fig. 1. Here, the intensity asymmetry observed with respect to the $k_y = 0$ line is due to photoemission matrix-element effects. Figures 1(a) and 1(c) show the hole FS mapping on the k_x-k_y plane at $T = 20$ K for the $x = 0.08$ and 0.25 samples, respectively, and Figs. 1(b) and 1(d) are their second derivatives. With changing photon energy, the hole FSs show strong three dimensionality, and are folded due to antiferromagnetic order [3], similar to the previous ARPES and de Haas–van Alphen studies of BaFe$_2$As$_2$ [4,5]. This indicates that the electronic structure of BaFe$_2$As$_2$ near the Fermi level (E_F) is not affected by the Zn substitution because the strong impurity potential of Zn binds all the extra 3d electrons around -10 eV below the E_F.

Fig. 1: Fermi-surface mapping of Zn-substituted BaFe$_2$As$_2$ in the k_x-k_y plane below $T_S \sim 135$ K. (a), (c) Hole FSs around the center of the Brillouin zone. (b), (d) Second-derivatives of the intensity maps in (a) and (c), respectively. Red dots denote positions of the Fermi momentum (k_F). k_F’s deduced from panels (b) and (d) are shown in panel (e).

References

* ideta@ap.t.u-tokyo.ac.jp