Crystallization and preliminary X-ray analysis of L-serine 3-dehydrogenase complexed with NAD(P)\(^+\) from *Pyrobaculum calidifontis*

Kazunari Yoneda\(^*\)\(^1\), Haruhiko Sakuraba\(^2\), Tomohiro Araki\(^1\), Toshihisa Ohshima\(^3\)

\(^1\)Department of Bioscience, School of Agriculture, Tokai University, Aso, Kumamoto, Japan
\(^2\)Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, 2393 Ikenobe, Miki-cho, Kita-gun, Kagawa761-0795, Japan
\(^3\)Department of Biomedical Engineering, Osaka Institute of Technology, Osaka, Japan

**Introduction**

L-Serine dehydrogenase (L-SerDH; EC 1.1.1.276), catalyzes the dehydrogenation of L-serine in the presence of NAD(P)\(^+\). This enzyme catalyzes dehydrogenation at the \(\beta\)-carbon (C3) position of L-serine. The suspected product of the reaction is 2-aminomalonate semialdehyde, which nonenzymatically decomposes into 2-aminoacetalddehyde and CO\(_2\).

Currently, no L-SerDH has been so far reported in archaea, the third domain of life, or in hyperthermophiles. Within the genomic sequence of an aerobic hyperthermophilic archaeon, *Pyrobaculum calidifontis*, we found a gene (open reading frame identification number Pcal_0699) whose predicted amino acid sequence exhibits 36\% identity with that of *P. aeruginosa* L-SerDH. Moreover, we succeeded in the expression of the gene in *E. coli* and confirmed that the gene product surely exhibits L-SerDH activity [1]. The *P. calidifontis* enzyme is probably the most thermostable L-SerDH described to date, which makes this enzyme potentially useful for stereospecific synthesis of L-serine and measurement of L-serine in foods and in a variety of other environments. The structure information of this thermostable L-SerDH may be available for the development of its application. In the present study, we describe the crystallization and preliminary X-ray analysis of *P. calidifontis* L-SerDH, as well as the expression of the gene in *E. coli*, as a first step in the structural analysis of L-SerDHs from archaeal strains.

**Materials and Methods**

Initial screening for crystallization was carried out with CrystalScreen and CrystalScreen 2 at 293 K using the sitting-drop vapor diffusion method.

The NAD(P)\(^+\)-dependent L-SerDH crystal was flash-cooled in liquid nitrogen at 100 K. Diffraction data were collected at 1.57 Å resolution using monochromated radiation of wavelength 1.0 Å and an ADSC CCD detector system on the NE3A beamline at the Photon Factory, Tsukuba, Japan. The oscillation angle per image was set to 1°. The crystal-to-detector distance was 184 mm. The data were processed using HKL-2000.

**Results and Discussion**

The diffraction-quality crystal (maximum dimensions of 0.6 × 0.2 × 0.1 mm; Fig. 1) was obtained within two weeks using a reservoir solution composed of 1.9-2.0 M ammonium sulfate, 100 mM acetate buffer (pH 4.5).

The crystals belonged to the monoclinic space group \(\text{C}2\). The \(R_{\text{merge}}\) value in the highest resolution shell (5.9\%) indicates that the crystals are diffracting far better than 1.57 Å (Fig. 2). Assuming one protein molecule in the asymmetric unit, the crystal volume per enzyme mass (\(V/M\)) and the solvent content were calculated to be 3.0 Å\(^3\) Da\(^-1\) and 59.8\%, respectively, which are within the frequently observed ranges for protein crystals.

**References**


* kyoneda@agri.u-tokai.ac.jp