Crystal structures of swelling minerals

Toshiro Nagase1,*, Takahiro Kuribayashi2, Koichi Monma3, and Isao Kusachi4
1The Tohoku University Museum, Tohoku Univ., 6-3 Aoba, Sendai 980-8578 Japan
2Department of Earth Science, Graduate School of Science, Tohoku Univ., Sendai 980-8578, Japan
3National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan
4Department of Earth Sciences, Faculty of Education, Okayama University, Okayama 700-8530, Japan

1 Introduction

Swelling minerals, example for smectite, are used for functional materials. Most swell minerals have layer
structures and molecular water exists within the layer. The water move from or into the interlayer, and the
structure was changed with the water content. Swelling minerals are also nanometer-sized crystal grain. Therefore,
details of the crystal structure have not been clarified.

An unknown mineral with a Ca-B-Si-O-H component was discovered from Fuka Mine, Okayama prefecture, Japan. The unknown mineral has swelling characteristics, and the lattice parameters are changed under dry and wet conditions. We propose here a study based on X-ray diffraction analyses to elucidate the crystal structure of the swelling minerals.

2 Experiment

The examined sample was collected from Fuka Mine, Okayama, Prefecture, Japan. The mineral occurs in
crystalline limestone near gehlenite–supurrite skarns. The samples are aggregates up to several ten millimeters in
width, which are comprised of sub-micron sized crystals.

X-ray diffraction experiments were performed using the automated four-circle X-ray diffractometer installed at
the beam line BL-10A, Photon Factory, High Energy Accelerator Research Organization. The wavelength (λ =
0.7785 Å) of synchrotron radiation was calibrated by the unit cell volume of the NIST ruby standard crystal at
ambient temperature.

Powder X-ray diffraction patterns were measured by a convenient diffractometer at Tohoku University and by
using the imaging plating system on the BL-10A.

3 Results and Discussion

All X-ray reflections from the crystal are weak and broad. Firstly, Laue photographs were taken by using the
imaging plate system. Obtained Laue photographs was shown in Figure 1. And then some reflections were
collected by the four-circle X-ray diffractometer. On the basis of the reflection data, the electron diffraction pattern,
which was obtained by using a transmission electron

microscope, was indexed (Figure 2). Electron diffraction analyses showed the mineral to be orthorhombic. By
using the results of the Laue camera analyses, and the lattice parameters was refined from powder X-ray
diffraction patterns; a = 7.223(1), b = 11.23(1), c =
12.29(1) Å, V = 996.9(1) Å³.

Fig. 1: Laue photograph of the Fuka unknown mineral.

Fig. 2: SAED pattern (a*-b*) of Fuka unknown mineral.

* nagase@m.tohoku.ac.jp