X-ray diffraction study of RRu_2Al_{10} (*R*=La, Ce, Yb, Lu) under high pressure

Yukihiro Kawamura^{1*}, Takuma Kawaai¹, Satoshi Yamaguchi¹, Yusuke Nishijima¹, Junichi Hayashi¹, Keiki Takeda¹, Chihiro

Sekine¹, Hiroshi Tanida², Masafumi Sera² and Takashi Nishioka³

¹Muroran Institute of Technology, Muroran, Hokkaido 050-8585, Japan

²Department of ADSM, Hiroshima University, Higashi-Hiroshima 739-8530, Japan

³Graduate School of Integrated Arts and Sciences, Kochi University, Kochi 780-8520, Japan

1 Introduction

 $RRu_{2}Al_{10}$ (R=La, Ce, Yb, Lu) crystallizes in the orthorhombic YbFe₂Al₁₀-type (space group *Cmcm* No. 63) crystal structure [1]. CeRu₂Al₁₀ exhibits a long range ordering (LRO) at unusually high temperature ($T_0 \sim 27$ K) [2-3]. The LRO suddenly disappears under pressure at 4 GPa. The sudden disappearance of LRO against pressure suggests that structural change could be happened at 4 GPa. On the other hand, YbRu₂Al₁₀ does not exhibit any particular order at ambient pressure. Yb³⁺ has one hole in 4f electron orbit while Ce³⁺ has one electron. Yb ion of YbRu₂Al₁₀ is in the intermediate valence state [4]. Thus, $YbRu_2Al_{10}$ may exhibit pressure-induced valence transition. In order to investigate a structural change on CeRu₂Al₁₀ and YbRu₂Al₁₀, we performed synchrotron Xray diffraction study at room temperature under high pressure. In addition, we also measured LaRu₂Al₁₀ and LuRu₂Al₁₀ as a reference material of CeRu₂Al₁₀ and YbRu₂Al₁₀, respectively.

2 Experiment

Single crystals of RRu_2AI_{10} (R=La, Ce, Yb, Lu) were grown by using Al self-flux method. The single crystals of RRu_2AI_{10} were crushed into a fine powder. The X-ray diffraction measurements under high pressures were conducted using synchrotron radiation. An imaging plate was used as a detector. The pressure was applied by diamond anvil-type pressure cell. A 4:1 mixture of methanol/ethanol was used as a pressure-transmitting medium. The applied pressure was determined by a ruby fluorescence method.

3 Results and Discussion

Figure 1 shows the X-ray diffraction patterns of YbRu₂Al₁₀ under pressure. Although each peak is shifted to higher angle with pressure, no peak splitting or disappearance is observed. CeRu₂Al₁₀ shows the same behaviour. These indicate no structural change in both compounds. Fig. 2 shows pressure dependence of volume on $LaRu_2Al_{10}$, $CeRu_2A_{10}$, $YbRu_2Al_{10}$ and $LuRu_2Al_{10}$. Each volume monotonically decreases with pressure, which indicates no structural modification up to 10 GPa. While the volume of YbRu₂Al₁₀ and that of LuRu₂Al₁₀ is almost the same at ambient pressure, the volume of YbRu₂Al₁₀ is smaller than that of LuRu₂Al₁₀ over 4 GPa. This result suggest that valence of Yb in YbRu₂Al₁₀ gradually changes with pressure. Since the valence changes against pressure can lead valence transition, X-ray diffraction study over 10 GPa is needed.

Fig. 1: X-ray diffraction pattern of $YbRu_2Al_{10}$ under 0.8 GPa (black) and under 9.9 GPa (red).

Fig. 2: Pressure dependence of volume on $LaRu_2Al_{10}$ (open circle), $CeRu_2Al_{10}$ (closed circle), $YbRu_2Al_{10}$ (closed square), $LuRu_2Al_{10}$ (open square).

Acknowledgement

The authors gratefully acknowledge the support from Muroran Institute of Technology (a grant for the Kidorui (Rare Earth) Program).

References

- [1] V. M. T. Thiede et al., J. Mater. Chem. 8 (1998) 125.
- [2] A. M. Strydom : Physica B 404 (2009) 2981.
- [3] T. Nishioka et al., J. Phys. Soc. Jpn 78 (2009) 123705.
- [4] M. Sera et al., J. Phys. Soc. Jpn 82 (2013) 024603.

* y_kawamura@mmm.muroran-it.ac.jp